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Abstract—This paper describes the task management ele-
ments of a framework for coordinating a changing collection
of heterogeneous robots operating in complex and dynamic
environments such as disaster zones. Our framework allows a
team to discover and distribute tasks among its members, in a
distributed fashion, where the structure of the team is under
regular change. Robots may become lost or fail at any time,
and new equipment may arrive at any time. We evaluate our
framework through an example implementation where robots
perform exploration and search for victims in a simulated
disaster environment.
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I. INTRODUCTION

Task allocation in a team involves mapping known tasks
to the most appropriate agent to perform that task. From a
global perspective, the most suitable agent to carry out work
(i.e. high likelihood of success; strong skill mapping) may
be the same individual for all current tasks. However, due to
the geographic spread of the team, it make may more sense
to have an agent physically located near the task’s location
carry out the task. Further, one of the goals of having teams
is in part to spread work around among members.

Physical limitations, such as the distance between tasks
or geographical limitations of team members, as well as
time-limited opportunities mean it is generally impossible
to rely on the best suited agent to carry out work. As a
result, some tasks must be allocated to agents that are not
well suited to carry out those tasks, in order that all tasks
have a strong likelihood of being accomplished (taking into
account prioritization based on importance as well as fit).

Task allocation has been a subject of multi-agent systems
(MAS) research for many years. Much early work was
studied using agents operating in abstract domains, where
conditions in the real world could be eliminated or relaxed.
Real-world task allocation is complicated by many things:
tasks are not all available at the outset, but are discovered
as work progresses; tasks are not necessarily discovered by
those with the capabilities of solving or even judging their
importance; and the mapping between agents and tasks may

be highly unstable, not only on the basis of agent workload,
but by losing and acquiring new agents.

Urban Search and Rescue (USAR) is an example of
a domain where this is the case. Operation in such an
environment is dangerous and presents many mobility and
sensory challenges [1]. Robots can become stuck, lost, or
destroyed at any time, which means that no one robot can
be considered unexpendable. The cost of losing a robot
means that cheaper robots, with sensing and locomotion
methodologies spread among a team, are much more cost-
effective. The distributed nature of jurisdiction means that
agencies with equipment may arrive at different times and
have different abilities. Coupled with risk of loss, this means
that a team must evolve over time, adapting to the loss
of individuals and taking advantage of newly discovered
robots. In particular, there is a challenge of never being
able to assume a single leader continues to exist, since an
agent guiding others may be lost in the same way that any
other robot can be. Surrounding all of this are challenges to
underlying technology: communication may be sporadic and
unreliable, and many solutions commonly used in robotics
(e.g. GPS) can be completely disabled by the surroundings
(i.e. robots must function in equivalent to an underground
environment).

This paper focuses on the task allocation elements of a
multi-robot framework for dealing with USAR and other
similarly dangerous environments. Because the agent pop-
ulation undergoes continuous change, task allocation must
interact with mechanisms for the management of team mem-
bers and the roles they occupy. While this is an extremely
challenging environment, a solution applicable to it should
also apply to a range of equally challenging domains, from
mining to operating on other planets, as well as domains
where only some of these severe challenges are present.

The remainder of this paper describes our framework and
its evaluation in a simulated USAR environment. Because
task allocation must interact with mechanisms for team
management, we begin by reviewing related work in these
areas from a multi-robot perspective. For other elements of
this framework not related to task management, see [2], [3].



II. RELATED WORK

Previous multi-agent systems research (e.g. [4], [5], [6])
has produced techniques for agents to form partnerships
to accomplish mutual goals. However, these works are
generally demonstrated in abstract domains, and do not con-
sider the challenges faced by robots operating in real-world
environments. There is little consideration for issues such
as the impact of unreliable limited range communication,
perception, and localization.

Auction-based approaches (e.g. [7], [8]) have been devel-
oped to perform distributed task allocation amongst teams of
heterogeneous robots. Similar to our work, these approaches
assume robots can fail at any time and that communication
may be unreliable. Auction-based approaches assume bid-
ders will bid only on tasks they are capable of carrying
out, where our work makes use of roles to guide the task
assignment process to robots which are potentially capable
of carrying out a task. Further, auction-based approaches
typically assume all robots have the necessary capabilities
to assign tasks, where our work assumes task allocation is
itself a task which is delegated to a more capable robot.

Gage et al. [9] developed an approach to multi-robot task
allocation that uses an emotion-based approach to assigning
tasks. Similar to our approach, their work assumes unreliable
communication and that robots can fail at any time. In their
work, robots with tasks to assign continually announce the
tasks. Those robots that hear the tasks calculate a shame
value corresponding to their suitability to carry out the task.
The shame value determines whether the robot responds with
an offer to carry out the task. Not responding increases
the shame value. This results in the best suited robots
responding first, and the less-suited robots responding later.
Although their approach attempts to reduce communication
overhead, it places the burden of task allocation on all robots,
even the most primitive. This is unrealistic for dangerous
environments, since expendability in robotics will mean that
there will be likely many simpler robots that can be sent to
areas of greater risk.

Kiener and von Stryk [10] present a framework for the
cooperative completion of tasks by teams of heterogeneous
robots. Their framework models the tasks that make up the
mission, and stores the degree to which each robot can
perform these tasks. Their work uses a single humanoid
robot and wheeled robot, and pre-computes the task suit-
abilities in advance. Although their work is an impressive
demonstration of heterogeneous robots cooperating in a real
world environment, the task allocation involved is very
primitive. The capabilities of the robots results in a single
mapping between tasks and robot types. We assume there
may be any number of robots suitable to carry out a task,
with varying degrees of suitability.

Ma et al. [11] developed an approach to performing
frontier-based exploration using an auction-based task allo-
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Figure 1. Tasks, roles and desired teams.

cation methodology. Similar to our work, robots respond to
task allocation requests with bids describing their suitability
to carry out the task. Their approach, however, uses a multi-
round auction approach which would be more susceptible
to communication failures of the type we assume in our
work. Further, our work assumes task allocation is generally
centralized to a single robot, where Ma et al. assume it is
performed in a completely distributed manner.

III. PRELIMINARIES

Our work assumes heterogeneous robots are operating
cooperatively in order to carry out the overall mission
(e.g. USAR). We assume the robot population includes
few robots with strong computational capabilities and many
simpler (i.e. expendable) robots with comparatively limited
computational and sensory capabilities.

Tasks form the basis upon which team maintenance de-
cisions are made. We assume tasks are descriptions of the
types of work a team normally expects to encounter during a
mission. As shown in Figure 1, task type definitions include
both a minimum requirements and suitability expression.
These expressions are defined in terms of descriptive at-
tributes describing the capabilities of the robots required to
carry out these tasks. The minimum requirements expression
establishes the bare minimum capabilities a robot requires
to carry out a task of that type. Similarly, the suitability
expression provides a means of calculating a numerical
value corresponding to a robot’s suitability to carry out that
task. The suitability values are used in the task allocation
process to determine the best robot on a team to carry out
a task. Team management also makes use of the suitability
expression as part of the process of determining the role a
robot fills on a team.

We define roles in terms of the types of tasks normally
expected of a robot filling that role. In this way, a role pro-
vides an abstraction of the underlying capabilities required
of a robot to carry out the types of tasks expected of the
role. This abstraction simplifies task allocation by avoiding
the need to consider each attribute individually, and provides
a means of assigning general responsibilities to robots on a
team.



Given the challenges inherent with operation in a difficult
domain, it is reasonable to expect that the composition of
teams will be in a constant state of change. Teams will
evolve over the course of the mission, as new members arrive
and others fail or leave the team. The team management
side of our framework aims to ensure an appropriate mix of
robots is available to carry out the tasks the team encounters.
The concept of a desired team identifies the roles and quan-
tities of each required in order to make an effective team. It
serves as a means of characterizing the type of work the team
is expected to carry out, and helps team management ensure
there is a suitable pool of robots available to assign tasks to.
Potential roles and desired team structure are assumed to be
defined in advance of the mission.

Because we assume few robots on a team have strong
computational capabilities, we assume within a team a
special-purpose team coordinator role is responsible for
directing the overall operation of the team. This role assigns
the general responsibility of task allocation to a single robot
and provides a single point for collecting the results of
carrying out tasks.

IV. TEAM MANAGEMENT

This section provides a brief overview of how our frame-
work supports the distributed reconfiguration of teams in
response to robot failures, the arrival of new equipment, and
encounters between teams during the mission. The interested
reader is directed to [2], [3] for a detailed discussion of the
team management elements of our research. Team manage-
ment helps ensure a suitable mixture of capabilities exists on
a team to provide the task allocation process with the highest
chance of succeeding. Although our methodology supports
the formation of teams from collections of individual robots,
we assume a mission will start with preformed teams.

Robots on a team compensate for lost or damaged team
members by periodically performing a role check operation.
In our framework, all wireless messages include the sender’s
current role and team information which nearby robots use
to discover the composition of their team. Team composition
information is timestamped, and robots that have not been
heard from in some time are “forgotten”. When a robot
performs a role check operation, it calculates its suitability
to fill the roles on its team. Under-filled roles, as determined
by the desired team definition, are given a higher weighting
to encourage a less suited robot to fill these roles. If, for
example, the team coordinator on a team failed, a less suited
robot could fill that role until a better robot is available. If
the role check identifies a change in role is necessary, the
robot implements it and informs its teammates of the change,
potentially triggering role checks by other team members.

Through the role check operations, the members of a team
are able to recognize situations where there is a deficiency in
capabilities within the team. By changing roles, potentially
to a less suited role, the members of a team attempt to fill
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Figure 2. Example of task discovery and assignment.

the void created by the departure of another team member.
This helps ensure task allocation can still take place. When
robots take on roles they are less suited to the resulting
task allocations are expected to be less ideal, where ideal
means approximating the team responsibilities that would
be assigned by a human expert. The team, however, is still
able to make useful progress.

Team management also takes advantage of situations
where robots on different teams encounter one another in the
environment. Close physical proximity provides robots on
different teams with the opportunity to visually identify each
other and take advantage of short-range communication.
During these encounters, the robots act as representatives
of their team and exchange mission-related information,
and knowledge of each other’s teams. The mission-related
knowledge exchange provides each team with an opportunity
to learn of the work the other team has carried out, and
helps reduce duplication of effort during the task allocation
process.

After sharing knowledge of each other’s teams, the rep-
resentative robots have an opportunity to merge or re-
distribute the robots between the teams. In the case of a
lone robot encountering an established team, the robot has
the opportunity to join the established team, or to form a new
team of its own using some robots from the established team.
Where two larger, established teams encounter one another,
the merge and re-distribution provides an opportunity for
both teams to make up for shortfalls in capabilities (as
determined by the desired team definition). This means the
task allocations have a better chance of succeeding, and that
task allocations will tend to be closer to ideal.

Thus, teams are a fluid aggregation of robots where the
robots switch roles within a team and change teams as
necessary to make the best use of the available robots. As
robots change roles and teams, the overriding goal is to form
stable teams that meet the definition of a desired team as
closely as possible, so that the teams can best carry out the
tasks encountered in the environment.

V. TASK ALLOCATION

Given an evolving team with the potential for ongoing
membership changes, our framework supports the identifi-
cation, allocation, and completion of tasks in challenging



environments. Every robot on a team plays a part in the
task allocation process. As robots carry out work, they are
also responsible for identifying new tasks in the environment
to the degree their sensor equipment allows them to do so.

Figure 2 illustrates an example of the task discovery and
assignment process. A robot identifies a potential disaster
victim as it explores the environment. A task is created to
confirm the presence of a victim in the environment. As-
suming the robot discovering the task lacks the capabilities
to carry it out, the task is sent to the team coordinator for
assignment. Through the task assignment process, the task
is assigned for completion by a robot with the necessary
capabilities.

We assume each robot maintains a prioritized list of tasks.
The task list is where each robot tracks new tasks it discovers
in the environment, participates in the negotiation of new
work to carry out, and assigns tasks it cannot carry out by
itself to other agents. Finally, the task list provides a source
of tasks for the robot to carry out itself.

A. Task Lists

Robots attempt to carry out the highest priority, oldest
task from their task list first. Tasks are normally carried out
through completion, with the exception of the case where a
higher priority task arrives than the current one. In such a
scenario the robot will suspend the current task and begin
work on the higher priority task. The suspended task will be
resumed once the higher priority task has been completed.
In a disaster environment, for example, a robot might stop
exploring an area if higher priority task to confirm the
presence of a victim arrives.

We assume robots will attempt to maintain a small fixed
size backlog of each task type to carry out (we chose a
fixed limit of 5 for our implementation, but this of course
can vary between robots and the estimated difficulty of
tasks). The backlog of tasks helps ensure robots are able
to continue carrying out useful work when communication
conditions prevent the robot from participating in the task
assignment process and acquiring more tasks. The fixed
size of the backlog helps encourage the tasks to be spread
out among other members of the team and encourages
parallel operation. Maintaining a backlog of work also helps
distribute tasks among all robots on a team, helping ensure a
single damaged robot does not result in the loss of all tasks,
which would occur if all tasks were stored by a single robot.

As a robot discovers tasks, it adds them to its task list. The
robot uses the minimum requirements expression (Section
III) of the task to determine if it is able to carry out the task
on its own. If it is able to carry it out on its own, and the
robot does not have an excessive backlog of this task type,
the robot will retain the task for future completion. If the
robot is not able to carry out the task on its own, either due
to having a large backlog of that type of task or a lack of
appropriate capabilities, the robot will attempt to send the
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Figure 3. The task assignment process.

task to the robot it believes fills the team coordinator role
on its team.

Poor communication conditions, or inconsistent knowl-
edge of the robot’s team can prevent the robot from sending
a task to the team coordinator for assignment. Further, the
robot could have become separated from its team coordi-
nator. If there are other members of its team nearby, and
the robot has the capabilities required to assign the task on
its own, it will attempt to do so. Otherwise, the task will
be retained until a point in time when it can be sent to an
appropriate robot for assignment (i.e. either when it is within
range of its own team, or when it joins a different team).

B. Task Assignment

The robot on a team filling the role of team coordinator
is generally responsible for collecting tasks from team
members and assigning them to suitable agents. This helps
reduce duplication of effort, as the team coordinator has a
more complete picture of the work required in the domain
and is able to filter out duplicate tasks reported by different
team members. It also provides a central point to collect the
results of carrying out tasks.

The team coordinator will periodically attempt to assign
tasks from its task list to other members of the team. For
each task requiring assignment, the robot will first attempt
to use a role-based assignment process. If no suitable robot
is found using this process, an attempt is made to use a less
restrictive exhaustive assignment process.

1) Role-based task assignment: The role-based assign-
ment of tasks takes advantage of the fact that the definition
of a role is in terms of the tasks a robot filling that role
is normally expected to carry out. This eliminates the need
to match task attributes exhaustively against the attributes



of each team member, speeding the task assignment pro-
cess. Role-based assignment is also advantageous because
the agent performing task assignment can send messages
addressed to specific recipients rather than broadcasting
a request and hoping someone responds. Role-base task
assignment occurs in three phases (illustrated in Figure 3):
sending task assignment requests, waiting for responses, and
sending confirmations.

During the first phase (Figure 3-1), the task assigner
iterates through the robots {K1,K2, · · · ,Kn} on its team
it knows fill a role normally expected to be able to com-
plete the task, offering the task to all potential assignees
simultaneously. Each potential assignee Ki processes the
incoming request and responds based on its current workload
and capabilities.

As illustrated in Figure 3-2, the assignee first deter-
mines its suitability to carry out the task by evaluating
the minimum requirements and suitability expression of the
task against its own capabilities. If the assignee meets the
minimum requirements, it checks its task list to see if it
has reached the backlog limit for tasks of this type. If the
assignee does not meet the minimum requirements for a
task, or the task would exceed the backlog for tasks of
that type, the assignee send a rejection message to the
task assigner, indicating it cannot carry out the task. If the
assignee meets the minimum requirements and its workload
permits, it responds with a message indicating its acceptance
of the task, along with its calculated suitability to carry out
the task.

After a fixed period of time, the task assigner evaluates the
acceptance messages it received (Figure 3-3) to determine
the task assignee which is best suited to carry out the task
(if any). A mission-specific cost determination is used to
break ties between equally suited assignees. A cost could
be calculated based on, for example, the distance from each
assignee to the task location. This would ensure where
multiple assignees are equally suitable to carry out a task,
it will be assigned to the one physically closest to the task
location.

A confirmation message is sent to the assignees indicating
which assignee was chosen to carry out the task. Upon
receipt of the confirmation, the chosen assignee marks
the task as accepted and sends back an acknowledgment
to confirm its acceptance of the task. At this point the
chosen assignee is free to carry out the task as workload
permits. The other assignees remove the task from their
task lists upon receipt of the confirmation message. Where
communication conditions are poor, it is possible an assignee
may not receive a confirmation. A timeout is used to ensure
the assignee only waits a short time for a response; where
it does not receive a response in time it removes the task
from its task list.

The task assigner waits for the acknowledgment message
sent by the task assigner for a fixed period of time. If

an acknowledgment is received, the assigner considers the
assignment successful and removes the task from its task list.
If no acknowledgment is received, task allocation moves on
to the next phase.

It is possible poor communication conditions prevents
the acknowledgment message from being received by the
assigner. In such a scenario, there is a potential for the same
task to be assigned to multiple robots. In the worse case there
is a potential for duplication of effort due to multiple robots
carrying out the same task. In the case of an exploration task
in our example implementation, the path both robots travel
to arrive at an exploration location will differ, resulting in
an opportunity for both robots to discover new work along
the way. In other domains, duplication of effort may be
undesirable, and an implementation would need to explicitly
take measures to minimize the impact of duplicate work.

2) Exhaustive Task Assignment: Due to communication
failures, or the task assigner having inconsistent knowledge
of its current team composition, it is possible for the role-
based task assignment process (Section V-B1) to complete
without finding a suitable robot to assign a task to. As
shown in Figure 3, in such a scenario the task assigner will
move on to the next phase of task allocation, exhaustive
task assignment, where all robots in range are considered
for assignment.

Exhaustive task assignment is not ideal, as it places extra
load on the team to process the assignment requests and
track responses. It also necessitates a greater reliance on
communication between robots.

Exhaustive task assignment uses the same three phases as
role-based assignment (see Figure 3). The distinction is that
in exhaustive task assignment, a task assignment request is
broadcast to any robot in range that can hear it – no specific
addressing occurs. This helps broaden the pool of potential
recipients, helping to mitigate against particularly poor com-
munication conditions. Robots receiving the task assignment
request on the assigner’s team send back responses as in
role-based assignment.

If after role-based and exhaustive assignment a task is still
unassigned, it is re-queued on the assigner’s task list so that
an attempt can be made to assign it later.

C. Coping with Failures and Inconsistent Knowledge

Due to inconsistent team knowledge, it is possible a task
assigner may not assign the task to the best suited robot on
the team. The minimum requirements expression of a task
ensures only robots that have a chance of carrying out a
task will attempt to do so. As the team operates, knowledge
of team structure and team composition will change. Thus,
at some points in time task assignments will assign tasks
to the best suited robots, while at others they will not. Our
framework assumes assigning tasks to less suited robots is
better than performing no task assignments at all.



During periods of particularly poor communication con-
ditions, in addition to team knowledge being inconsistent
between members of a team, the overall task assignments
will have a tendency to fail. Poor communication will result
in fewer task assignment requests reaching the intended
assignee robots. This means the pool of available task
assignees will be smaller than would normally be expected.
Where none of the potential assignees meet the minimum
requirements to carry out a task, a task will tend to remain
unassigned. Further, where few robots meet the minimum
requirements, there is a lower chance the available robots
are well suited to carry out the task, resulting in less
than ideal task assignments. The task backlog each robot
maintains helps ensure that the robot has a backlog of work
to be performed during these periods of poor communication
conditions.

Where communication conditions are extremely poor,
the result will be few discovered tasks sent to the team
coordinator for assignment, and few tasks assigned to the
team by the team coordinator. In such scenarios, robots must
fall back to their backlog of tasks to ensure useful work is
carried out.

When a robot becomes lost or separated from its team, it
is possible for the robot to build up a backlog of discovered
tasks which it lacks the capabilities to carry out on its own.
Further, the robot may lack the necessary capabilities to
assign these tasks on its own. In such a scenario the robot
will retain the tasks it encounters, as its capabilities permit.
As the robot continues operation, it can either re-encounter
its current team, or potentially join another team in operation
in the environment. At this point, the backlog of tasks would
be sent to the team coordinator for assignment. Where the
robot joins a different team, the unassigned tasks provide
another means of transferring knowledge from one team to
the other.

It is also possible for a robot to be destroyed, taking a
backlog of tasks with it. Our methodology assumes these
tasks become lost, and would be re-discovered by other
robots as the mission progresses. In a domain where it is
critical to ensure no tasks are lost, the team coordinator could
retain knowledge of all tasks and reassign uncompleted tasks
assigned to lost team members.

VI. EXAMPLE IMPLEMENTATION

We implemented and evaluated our framework using a
simulated USAR domain created using the Stage multi-robot
simulator [12]. Our simulated domain tasks heterogeneous
robots with exploring a damaged structure, while building
a map of the environment and locating casualties. Robots
can become separated from their team or damaged at any
time, and new robots are released into the environment as
time goes on. We used a modular design approach to ensure
our implementation can form the basis of future work. To
support our work, we made changes to the Stage simulator to

provide simulated, unreliable communication between robots
[2].

We chose to use simulation to study our approach, as
our work if primarily concerned with supporting effective
task allocation where teams evolve over the course of
the mission. Using simulation in multi-robot research is a
well established practice (e.g. [13] used simulated USAR
environments).

Our implementation uses three types of robots chosen to
demonstrate different physiologies, and an overlap of capa-
bilities. MinBots are small expendable robots with limited
sonar sensors for navigation and mapping. The MinBots
have a wheeled physiology which restricts their movement
to open areas. They can detect the potential presence of
victims in the environment, but lack the memory or pro-
cessing capabilities to coordinate a team. MaxBots are larger,
complex robots with a tracked drive, enabling them to access
areas of the environment the other robots cannot. Superior
computational and memory capabilities make them ideal for
coordinating a team and planning the exploration process.
MidBots are wheeled robots sized between the MinBots
and MaxBots. They possess specialized sensor equipment
capable of confirming potential victim readings reported
by the MidBots. Their computational capabilities provide
them with the capability of coordinating a team, albeit less
effectively than the MaxBots.

The tasks in our environment are focused on exploration
of frontiers identified by more powerful robots and ver-
ification of potential victims identified by less powerful
robots. These tasks are grouped into roles focused primarily
on exploration, and others focused primarily on victim
verification.

VII. EVALUATION

Our simulated USAR environments are 60mx60m in size
and include two teams with four MinBots, two MidBots,
and one MaxBot. The teams begin operation in opposite
corners of the environment. 50 randomly positioned rooms
(5−12m wide, and 5−12m long) are distributed through-
out the environment. 40% of the rooms are accessible by
all robots, and 60% are only accessible by the MaxBots.
The environment also contains randomly positioned debris
(passable by MaxBots), and obstacles (impassable to all),
accounting for 13% of the environment. Finally, 20 victims
are distributed in the environment, and an additional 10
debris configurations resembling victims are included. The
MinBots are unable to distinguish between the victims and
debris configurations.

To evaluate our methodology, we performed an exper-
iment to study the effectiveness of task allocation, given
the fact team structure can change at any time. Our ex-
periment includes two independent variables to control the
communication success rate (20%, 60%, 100% success), and
the probability of robot failure (minor, moderate, major).



Another independent variable controls whether replacement
robots are available or not. Replacements (10 MinBots, 2
MidBots, and 1 MaxBot) begin operation from the edge of
the environment at the 5 minute mark, and provide additional
resources which can augment the capabilities of existing
teams, enabling more discovered tasks to be carried out.

We compared our methodology against two baseline
cases. In the first, our task allocation mechanism as outlined
in Section VI is employed, but robots cannot change roles,
and team membership is fixed (robots cannot leave or join
teams). Since there is no ability to improve a team by
altering roles or membership, this provides a baseline perfor-
mance for our task allocation mechanism alone, as opposed
to the benefits achieved in tandem with team management.

The second base case also uses fixed roles and team
membership, and includes a fixed mapping between tasks
and robot types (e.g. similar to [10]). This baseline is a
worst-case scenario, where there is no means of adapting to
deficiencies in team composition. There is no flexibility to
assign tasks to robots other than those robots ideally suited
to carry them out.

Our experiment used a factorial design with a total of 8100
experimental trials. To help eliminate bias due to features
of any one environment, we used 3 different environments.
The environments were generated with a tool to ensure
similar coverage, random victim distribution, and equal start
distance between teams. Each experimental condition was
repeated 50 times, and ran for 30 minutes of simulated time
each.

To evaluate our methodology, we recorded two values
at fixed points throughout each trial: the percentage of the
environment explored not covered by impassable obstacles,
and the percentage of victims successfully identified.

Figures 4 and 5 show the improvements realized using
our framework in the percent of the environment covered
and victims identified, respectively, over the baseline cases.
Although our methodology shows an improvement over the
base cases at the 20% communication success rate, it is
important to note that the performance of all methodologies
was actually quite poor. Too few messages were successfully
delivered, resulting in a general failure to allocate tasks, and
a tendency for teams to break apart over time.

At the 60% communication success rate, our methodology
performed considerably better than the base case where tasks
are mapped to robots in a fixed manner. The flexibility to
assign tasks to less suited team members resulted in the
team performing better overall. Where robots were able to
change roles and teams, performance was further improved
as teams were able to compensate for failures of robots by
restructuring the team or forming new teams from remaining
robots.

Victim identification showed larger improvements com-
pared to the percent of the environment covered due to the
smaller number of victim identification tasks compared to

Figure 4. Improvement in coverage over baseline cases.

Figure 5. Improvement in victims identified over baseline cases.

exploration tasks. Being able to restructure teams helped
ensure the relatively scarce victim identification capability
was available more often, resulting in more successful task
allocations.



Where replacement robots are available (Figures 4 and 5),
our results show that our framework is able to more effec-
tively allocate tasks, taking advantage of the new equipment
by augmenting existing teams or forming new ones.

When comparing the improvements in percent of the
environment covered against both base cases, it is interesting
to note that the performance increases are generally higher
when comparing against the baseline where task allocation is
fixed. This is due to the fact our task allocation methodology
is able to assign exploration tasks to less suited team
members. Results for victim identification are similar due
to the fact that our implementation has only one reasonable
mapping for victim identification tasks.

VIII. DISCUSSION AND FUTURE WORK

Our methodology demonstrates strong benefits in allo-
cating tasks to appropriate team members in the face of
unreliable communication, and a changing team structure.
Allocating tasks based on available resources helps ensure
the team is able to continue making useful progress, despite
a lack of important skills on a team. Allowing the task
allocation responsibility to shift to other members of a team
provides the ability to continue allocating tasks, despite the
failure of a team coordinator. Where replacement robots
are available, our task allocation methodology allows the
replacement robots to be effectively utilized on the teams
they join.

Our research has shown the benefit of using a task
allocation methodology where tasks are allocated using role
assumptions that also help guide the continuing evolution
of the team structure. This ensured task allocation was still
effective, despite the loss or failure of team members, and
the introduction of replacement equipment.

Our approach and its evaluation have pointed out a
number of interesting avenues of future research. First, our
methodology assumes robots can suffer failures at any time,
but does not actively attempt to re-assign tasks that were
assigned to robots the team determines has failed. The
rationale for this was that because the environment was
assumed to be dangerous, enough robot loss would occur
that it would be less resource-intensive to assume robots
were lost after a time rather than actively tracking task
performance. However, there may be cases where some
tracking could avoid unnecessary task reassignment in spite
of high robot losses.

It would also be useful to investigate viewing team
recruitment as an allocatable task. Currently, team members
are obtained by encountering them or balancing membership
with another team. However, there may be situations where
actively searching for a given type of robot may be more
beneficial than allocating tasks in the interim to less-suited
robots. The balance between effective task allocation and
active management of team membership is a subtle one and
deserves greater exploration.

Our current methodology also assumes a task is allocated
to a single robot - an obvious extension would be the al-
lowance of shared tasks that would require tight cooperation.
Finally, more exploration outside of simulation is warranted.

This research highlights the importance of understanding
the issues involved with effective task allocation in difficult
and challenging domains. Because of the challenges inherent
in these domains, robots cannot make assumptions about
team structure or composition, and so must rely on effective
task allocation to ensure work is completed. It is our hope
that our work will encourage future research in this area.
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