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Abstract

A fully autonomous robot needs a flexible map to solve frequent change of robot situations and/or tasks. In this paper, based on the second
type of fuzzy modeling, fuzzy potential energy (FPE) is proposed to build a map that facilitates planning robot tasks for real paths. Three rules
for making use of FPEs are derived to ground the basic ideas of building a map for task navigation. How the FPE performs robot navigation is
explained by its gradient directions and shown by its gradient trajectories. To code qualitative information into quantity, the proposed FPE provides
a way to quickly find a path for conducting the designated task or solving a robot under an embarrassing situation. This paper pioneers novel design
and application of fuzzy modeling for a special map that exploits innovation usage of task navigation for real paths. Actually, visibility graphs
based on the knowledge of human experts are employed to build FPE maps for navigation. To emphasize the idea of the created FPE, seven
remarks direct the roadmap towards being a utility tool for robot navigation. Three illustrative examples, containing three spatial patterns, doors,
corridors and cul-de-sacs, are also included. This paper paves the way to create ideas of intelligent navigation for further developments.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A fully autonomous robot needs a flexible map to solve
frequent change of robot situations and/or tasks. Qualitative
knowledge and topological information [16,17] are superior to
the raw metric information [11] for building a spatial model that
is compact and reproducible for task navigation. Qualitative
spatial models in terms of a graph or topological map were
developed and constructed to achieve the robustness and
reproducibility of environment representation [3]. However,
quantitative information providing precision navigation has its
importance as well. A global topological map connecting local
metric maps was proposed to allow a compact environment
model, which does not require global metric consistency and
permits both precision and robustness [40]. This paper focuses
on developing a special map based on qualitative information
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flexibly combined with metric information to plan real paths for
task navigation so that robots cope with the change of situation
and/or tasks easily.

Robot navigation usually uses metric information for path
planning. At the development initiation, Lozano-Pérez and
Wesley [24] proposed a visibility graph to record both sets
of all obstacle vertices and all connections for the two
vertices without overlapping the obstacles in a workspace.
For moving objects of polygon and polyhedron, Lozano-
Pérez [23] presented algorithms to compute the configuration
of the obstacle spaces and acquire a visibility graph. Because
a visibility graph involves the information of collision-free
paths, path planning becomes searching visibility graphs for the
shortest path. Many researchers [1,26,30,44] then focused on
developing more effective algorithms to search visibility graphs
for the shortest path.

However, a visibility graph must be reconstructed when
the sizes of moving objects vary. This reconstruction was
eliminated by considering the maximum radius of collision-
free regions in proposing voronoi diagrams [19]. In a voronoi
diagram, the collision-free paths are equidistant from two or
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more obstacle boundaries including the workspace boundary.
Based on a voronoi diagram, a “retraction” method planned
the path of a moving disc [27,28]. Moreover, Takahashi and
Schilling proposed voronoi graphs for a moving rectangle [37].
Recorded in the voronoi graph, the collision-free paths stay
away from the obstacles, but do not include the shortest path.
Therefore, Liu and Arimoto applied the tangent graph idea [8,
21,22] to an extended tangent graph [20] for finding the shortest
path as a moving disc with arbitrary radius.

Both the visibility graph and the extended tangent graph
solve the problem of visiting positions, namely path planning.
However, controlling robots to pass the planned positions is
the other problem, namely motion control. Path planning with
a visibility graph or a tangent graph exhaustively searches its
content to find the shortest or the safest path. Hence, both are
called the global strategy of path planning problems. Global
strategies are not adequate for real-time motion control because
of usually wasting a very long time. In order to integrate motion
control with path planning, Khatib [14] proposed the potential
field approach to reduce the design procedure for real-time
robot control.

The potential field approach usually designates obstacle
positions as repulsive potential and a goal position as
the minimum location of an attractive potential well in
unobstructed environment [42]. On one hand, repulsive
potential pushes a robot to stay away from an obstacle. On the
other hand, an attractive potential well pulls a robot towards the
minimum potential position, the goal position. Both repulsive
and attractive potentials are combined to facilitate obstacle
avoidance for real-time control.

In contrast to the global strategy, the potential field approach
is called a local strategy because of only adopting a local
view to model the environment around a robot. The form
of mathematical equations makes it difficult in the potential
field approach to add other information or to extend the
active scope of robots. In addition, after planning, the global
strategy fixes the traveled path, making it inflexible to a
little change in environment. The strategies of both local and
global path planning have their different shortcomings. By
the navigation template, mediating qualitative guidance and
quantitative control is a solution to the path planning possessing
both precision and flexibility [32]. However, the combination
of substrate and modifier navigation templates to calculate
Preferred Direction of Travel (PDT) after the Immediate
Navigation Objective (INO) is a difficult and complicated
process for task navigation [32]. This paper proposes Fuzzy
Potential Energy (FPE) which inherits the sprit of the potential
field approach to gain the function that codes qualitative
information into a quantitative value for robot navigation. The
proposed FPE provides a simple way to plan real paths to finish
a task.

FPE is an innovative application of fuzzy modeling to define
a new type of potential field approach. Basically, there are two
types of fuzzy modeling: (1) imitating an expert experiment or
fulfilling engineering knowledge and (2) modeling a complex
or unknown system. The function of the first type is similar
to a controller [12,18,25,31,33,45,46]. The second type of
fuzzy modeling is designed to approximate a complex or
unknown system [5,6,10,15,29,34–36,38,39,43]. This type of
fuzzy modeling is employed for controller design and/or for
system analysis. When both engineering knowledge and an
expert operation are insufficient, control laws can still be found.
The FPE makes use of the second type of fuzzy modeling to
construct spatial models for improving path-planning strategies.
Khatib proposed a potential field approach to combine local
strategy with the global strategy [14]. This combination
considered only obstacle positions, which is usually used
for global strategies, in local strategy. However, the obstacle
positions are not unique information used for global strategies.
There is lots of more important information such as obstacle
vertices, connecting links between two vertices, junction nodes,
terminal nodes and pseudo-nodes, etc., for different objectives
of path planning. For example, the obstacle vertices and
connecting links between two vertices are devised for the
shortest path in a visibility graph [24]. Junction nodes, terminal
nodes and pseudo-nodes are connected for the safest path in a
voronoi diagram [37]. The proposed FPE facilitates the more
important information to become useful in robot navigation.

Both local and global path planning navigate a robot for
conducting a fixed task from its current position to a goal
position. However, a fully autonomous robot, in general,
selects one of many candidate tasks for conducting. Therefore,
navigation after selecting one task needs quick algorithms
to find the path in the given environment information for
conducting. The FPE is defined to extend navigation functions
from paths to tasks so that it can quickly find out the path for
conducting a task. Compared with potential field approach, the
FPE can locally adjust the potential distribution to improve
the shortage of using the form of mathematical equations.
Besides, the function of finding the path from qualitative
information provides a way to quickly conduct task navigation.
In addition, the workspace for FPE is divided into discrete cells
like cell decomposition approaches [4,7,13,41]. Path planning
approaches based on square cells can have the merits of
generating accurate shortest paths, but they are inefficient when
environments involve large areas of obstacle-free regions [4,
41]. Quadtree-based approaches [7,13], in general, are more
efficient than square grid-based approaches. The FPE makes
use of the workspace based on the square grid-based approaches
but having the function like quadtree-based approaches guiding
forward neighborhood cells. The FPE approach makes a cell
possess more sophisticate function that facilitates both easy
reduction of the total number of cells in a workspace and
flexible adjustment to solve robots for different tasks. The
proposed FPE guides a robot using multiple directions like [2,
9], but it trains by fuzzy rules and neural networks to obtain
a robot’s real paths, that are different from a visibility graph
used to organize the distribution of FPEs in a workspace.
According to visibility graphs, the FPE solving the problem
of task navigation for real paths is much straighter. Three
examples including three spatial patterns, a door, a corridor and
a cul-de-sac, illustrate how to design the FPE for a special map
that embeds a path to conduct its task. The main contribution of
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this paper is to build a special map that is flexibly adjusted and
easily maintained by FPEs.

The rest of this paper is organized as follows. In Section 2,
FPE is defined to represent the potential energy of one position
in a workspace. After assigning a variety of FPEs into distinct
cells in a workspace, a map is built to form a potential function
for robot navigation. It is derived that the gradient directions
of a potential function can be used for navigating the robot
in Section 3. For rigorously explaining the derived result,
Section 3 is separated into two subsections to discuss the
gradient directions of one FPE and the interaction between two
FPEs, respectively. In Section 4, an FPE set in a workspace is
proposed to ensure that the FPE can navigate a robot to arrive at
a goal point. In Section 5, an FPE designed for paths to conduct
tasks is presented by three examples. Besides how the FPE
produces the path that avoids obstacles, and arrives at a goal
position is also included. Conclusions and further development
are discussed in Section 6.

2. Fuzzy potential energy for a spatial model

In this section, the FPE motivated by the potential field
approach is defined. Based on this definition, FPE applications
are formularized as three rules to construct spatial models for
robot navigation. In addition, a computation scheme to get
potential energy is also included.

Assume that FPE is defined for a two-dimensional
workspace W , where W is divided into (2q + 1)2 square areas.
The i j th square area is called cell Ci, j , where (i, j) is its central
point, for i and j = −q, . . . , 0, . . . , q . Note that, in W , C0,0
is the central cell, C−q,q is the top-left cell, Cq,q is the top-
right cell, C−q,−q is the bottom-left cell, and Cq,−q is the
bottom-right cell. An FPE is assigned to cells Ci, j to contribute
potential energy for robot navigation. The following expresses
the assumptions about every cell.

Assumption A1. In the workspace W , every cell Ci, j , for i and
j = −q, . . . , 0, . . . , q , is of unit length and width.

It is convenient for Assumption A1 to represent a workspace
by FPEs, but this assumption will be relaxed for general
workspaces at the ending of this section. That is, every cell can
be not square, then W can be any size.

FPE is motivated by the potential field approach which,
for robot navigation, constructs virtual potential energy at any
position in W . The function of the virtual potential energy is to
guide or affect a mobile robot so that it can avoid obstacles and
go towards the goal position. To accomplish this objective, an
obstacle associated with positive virtual potential energy results
in repulsive force to push a mobile robot staying far away. In
contrast, a goal point associated with negative energy results in
attractive force to pull a mobile robot going towards its location.
This idea leads us to define FPE.

FPE is defined using fuzzy set theory (FST) to produce the
virtual potential energy. FST applications in general replace
real variables with linguistic variables. A linguistic variable
includes a term set, which is a set of names with linguistic
values. Each linguistic value is quantified with a fuzzy set. For
example, if speed is interpreted as a linguistic variable, then its
term set T(speed) could be

T(speed) = {slow, moderate, fast, very sloe,

more or less fast, . . .}, (1)

where each term, the linguistic value in T(speed) is
characterized by a fuzzy set. We might interpret “slow” as “a
speed below about 40 mph”, “moderate” as “a speed close to
55 mph”, and “fast” as “a speed above about 70 mph”. These
terms can be characterized as fuzzy sets, F̃slow, F̃moderate and
F̃fast, respectively. In all, the main constituents of FPE are
linguistic variables and fuzzy sets.

Potential energy is viewed as a linguistic variable in the
proposed FPE. Let the linguistic variable be named Potential
Index (PI) and its term set be

T(PI) = {k | k = −r, −r + 1, . . . ,−1, 0, 1, . . . r − 1, r} , (2)

where r is the number of positive or negative PI. The most
positive (largest) PI is r , but the most negative (smallest) PI
is −r . Thus, the number of the term set is 2r + 1. Moreover,
the linguistic values are characterized by fuzzy sets P̃k , for
k = −r, . . . , 0, . . . , r (r > 0). Therefore, the FPE consists
of both linguistic variables k, namely PI and fuzzy sets P̃k . The
following is a rigorous FPE description.

Definition 1 (Fuzzy Potential Energy (FPE)). FPE indicates
potential energy with fuzzy sets. If PI of one region ω ∈ W is k,
then the potential energy, dominated by this PI, is represented
by fuzzy set P̃k , denoted by

P̃k =

∫
W

µP̃k
(x, y, R)/(x, y) (3)

where W is the workspace, (x, y) ∈ W is one position in
the workspace, µP̃k

(x, y, R), the membership function of P̃k ,
expresses the possibility of position (x, y) with PI k, and R is
the parameter in the space limits covered by this membership
function.

Note that P̃r is the largest FPE whereas P̃−r is the smallest
FPE. In addition, {P̃k, for k = −r + 1, . . . ,−1} are named
moderate-negative FPEs, but {P̃k, for k = r − 1, . . . , 1} are
named moderate-positive FPEs.

In FST, fuzzy sets are quantified by membership functions.
Without exception, FPE P̃k requires a membership function
to represent the quantity which is the possibility of potential
energy k at one position covered by it. The following is the
definition of membership functions.

Definition 2. The membership function µP̃k
(x, y, R).

If the FPE P̃k is assigned to the cell Ci, j , then
µP̃k

(x, y, R) = max(0, µPk (x, y, R)), and

µPk (x, y, R)

= 1 − 2(y − j)/3R when (y − j) = 3(x − i)

and (y − j) = −3(x − i),

= 1 −((x − i)+ (y − j))/2R when (y − j) = (x −i)/3

and (y − j) 5 3(x − i),
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Fig. 1. The range of the membership function µP̃k
(x, y, 1).

Fig. 2. The membership function µP̃r
(x, y, 1).

= 1 − 2(x − i)/3R when (y − j) = −(x − i)/3

and (y − j) 5 (x − i)/3,

= 1 −((x − i) −(y − j))/2R when (y − j) =−3(x −i)

and (y − j) 5 −(x − i)/3,

= 1 + 2(y − j)/3R when (y − j) 5 3(x − i)

and (y − j) 5 −3(x − i),

= 1 +((x − i) + (y − j))/2R when (y − j) 5(x −i)/3

and (y − j) = 3(x − i),

= 1 + 2(x − i)/3R when (y − j) 5 −(x − i)/3

and (y − j) = (x − i)/3,

= 1 + ((x − i) − (y − j))/2R when

(y − j) 5 −3(x − i) and (y − j) = −(x − i)/3, (4)

where (i, j) is the central point of Ci, j , x and y are the vertical
and horizontal positions, respectively. R is the distance between
point (i, j) and one edge of the area covered by the FPE P̃k .

Fig. 1 depicts the range of the membership function
µP̃k

(x, y, 1). As shown in Fig. 1, R = 1, and the shaded square

area is the cell occupied by FPE P̃k . In addition, Fig. 2 shows
the profile of µP̃k

(x, y, 1) as its center is at (0, 0). Fig. 2 reveals
that the central position (x = 0 and y = 0) possesses the
maximum membership grade. At the position leaving from its
center, the membership grade degrades, and becomes zero as
the position outside its cover range. Implied in Fig. 2, the central
position has the maximum possibility of possessing PI k. The
possibility degrades at the position leaving from its center, and
the possibility becomes zero as the position becomes outside its
range. The proposed FPE provides a way to represent the virtual
potential energy (PI) under the continuity value (membership
grade). This way lets FPE express virtual potential energy more
flexibly than the potential field approach.

In respect of FPE functionality, the grade of µP̃k
(x, y, R)

is the degree to which P̃k acts on a mobile robot at one
position in the workspace. Thus, R means the FPE action range.
Basically, FPE is proposed to have two types of action ranges
because robot navigation faces two objects: obstacles and a goal
position. During meeting an obstacle, a robot only needs to
move far away from it. Therefore, the action range of one FPE
designed for an obstacle only needs to involve its neighborhood
cells. As shown in Fig. 1, R = 1 is this type of FPE. In contrast,
a goal position needs effective action as a robot at any position
in a workspace. Thus, R is proposed to be one half of the
workspace length for a goal position. As a result, two types
of membership functions, µP̃k

(x, y, 1) and µP̃k
(x, y, a) (where

a is one half of the workspace length), are designated for the
proposed FPE.

However, it is a design issue which cell in the workspace
should possess which FPE. The design issue can be derived
by the application rules of the potential field approach since
FPE borrows its spirit. In general, the potential field approach
is designed using rules in which the obstacle possesses the
highest potential energy to push robots away from it, while the
goal point possesses the lowest potential energy in order to pull
robots towards it. In summary, the application rules for FPE are
formularized as follows

Rule (1) If a cell Ci, j covers the goal position, then its FPE is
P̃−r .

Rule (2) If a cell Ci, j contains an obstacle, then its FPE is P̃r .
Rule (3) If a cell Ci, j needs a special effect on the mobile robot,

then its FPE is P̃k (for k = −r + 1, . . . , 0, . . . , r − 1).

Rules (1) and (2) construct a basic navigation function of
FPE that P̃−r guides towards a goal point, and P̃r for staying
away from an obstacle. Rule (3) allows a planner to plan where
a mobile robot goes through towards a goal point. From the
point of view of energy, Rule (3) adds various levels of potential
like injecting subjective actions on a mobile robot. The FPEs
resulting in the subjective actions include two classifications:
the moderate-negative FPEs (P̃k , for k = −r + 1, . . . ,−1)
and the moderate-positive FPEs (P̃k , for k = 1, . . . , r − 1).
The moderate-negative FPEs result in attractive forces at
various levels. In contrast, the moderate-positive FPEs result
in repulsive forces at various levels. It is the advantage of the
defined FPE that planners can use Rule (3) to flexibly adjust
the potential energy distribution in a workspace. In this paper,
the FPE assigned to the cells of a workspace builds a special
map that can be flexibly adjusted by the moderate-negative
FPEs. The moderate-negative FPEs locally adjusts potential
distribution based on qualitative information in a workspace for
a special task such as crossing a door, passing that corridor or
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Fig. 3. A scheme of calculating potential energy.
escaping this cul-de-sac, etc. In Section 5, three spatial patterns
will be contained in illustrative examples to demonstrate that
the FPE can flexibly solve different navigation tasks.

Finally, guiding a robot needs a way to find the actual
potential energy at any position in the entire workspace.
Definition 1 reveals that when the cell Ci, j possesses the FPE
P̃k , this cell’s PI is k. This provides a sense to derive a group of
simple rules as follows

IF the FPE is P̃k, THEN the potential energy is k (5)

where P̃k is the fuzzy set characterized by the membership
function µP̃k

(·), and k is PI (real value), for k =

−r . . . , 0, . . . , r .
By the product operation rule of fuzzy implication and max

aggregation operation, real potential energy at any position in
the workspace can be obtained via a defuzzifier function, named
the potential function hereafter, which is

Upe(x, y) =

r∑
k=−r

µmax
P̃k

(x, y)k

r∑
k=−r

µmax
P̃k

(x, y)

(6)

where µmax
P̃k

(x, y) is the maximum membership grade for all the

fuzzy sets P̃k , and k = −r, . . . , 0, . . . , r .
Note that a potential function constructed by FPE is a spatial

map approach to a workspace for robot navigation.
Furthermore, a scheme for calculating the potential energy

is formulated by Fig. 3, where (X, Y ) is the position in the
workspace, Gx and G y are the normalizing scaling factors for
X and Y , respectively, Upe is the potential energy, and Gpe is
the scaling factor for potential energy. Therefore,

x = Gx X ,
y = G yY , and
Potential energy = GpeUpe.

In Fig. 3, the function of a group of simple rules associated
with a defuzzifier is just to translate virtual energy into real
potential energy. An FPE map plays the role of the calculation
of kernel-like linguistic rules in a fuzzy logic controller. The
FPE map dominates performance of a navigation work, and is
usually built by the knowledge of human-expert-like linguistic
rules in a fuzzy logic controller. In this paper, visibility graphs
will be engaged as experts to build FPE maps. How a FPE
map performs robot navigation will be revealed by analysis
of FPE gradient directions in Section 3 to derive basic FPE
layout in Section 4. In addition, there is still a little distinction
from conventional fuzzy logic operation in the calculation
scheme. Here variables x and y are inputs of all membership
functions simultaneously, but input variables usually have
distinct membership functions in conventional fuzzy logic
operation. After taking the grade of all active membership
functions, the simple rules and defuzzifier compute real
potential energy Upe. The calculation is a function of the form:
[−a, a]×[−a, a] → [−r, r ], where a is half of the workspace’s
length or width, and r is the largest PI. Note that Gx and G y
can be properly chosen such that the cells in the workspace are
of unit length and width. For example, if the real size of a cell
is 5 × 5 cm2, then both Gx and G y are 1/5. In a workspace, the
cells, which are of unit length and width, satisfy A1.

Remark 1. Each cell can be any size by appropriately choosing
Gx and G y .

3. The gradient directions of FPEs

How the FPE plays the role for robot navigation is analyzed
by its gradient directions. This section derives the FPE gradient
direction first, and then studies the gradient directions of both
one FPE and interaction between two FPEs in two subsections,
respectively.

It is well known that flow directions of an energy function
are usually expressed by its gradient directions. Therefore, gra-
dient directions of a potential function are regarded as acting di-
rections of FPE on a mobile robot. Let the gradient directions be

Eε(x, y) = −∇Upe(x, y) = −
∂Upe

∂x
x̂ −

∂Upe

∂y
ŷ (7)

where Upe(x, y) is a potential function and x̂ and ŷ are the unit
vectors in the x and y directions, respectively. Note that Eε(x, y)

is the potential field formed by the FPE in a workspace. In ad-
dition, see the equation in Box 1, where ∇µmax

P̃k
(x, y) is the

gradient of µmax
P̃k

(x, y), µmax
P̃k

(x, y) is the maximum grade of

the membership function of all the fuzzy sets P̃k , and k is PI.
In general, the gradient direction of a real-value function at

one point is the direction with the greatest increment. Here, the
direction of minus gradient is that of the greatest decrement.
That is, the gradient directions will avoid the high potential
energy (the most positive FPE, possessed by an obstacle cell
usually) and go towards the low potential energy (the most
negative FPE, possessed by the goal point cell). Consequently,
the definition of the gradient directions is consistent with the
robot navigation objective.
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Eε(x, y) = −∇


r∑

k=−r
µmax

P̃k
(x, y)k

r∑
k=−r

µmax
P̃k

(x, y)



=

(
r∑

k=−r
µmax

P̃k
(·)k

)(
r∑

k=−r
∇µmax

P̃k
(·)

)
−

(
r∑

k=−r
∇µmax

P̃k
(·)k

)(
r∑

k=−r
µmax

P̃k
(·)

)
(

r∑
k=−r

µmax
P̃k

(·)

)2

Box 1.
Because the membership functions of the negative FPEs
cover the entire workspace, its FPE affects a mobile robot at
any position inside the workspace. In contrast, the positive
FPEs only affect a mobile robot within its neighborhood cells.
In a word, the negative FPEs have wider applications than
the positive FPE. Therefore, the study of gradient directions
focuses on the negative FPEs. The positive FPE will be derived
from these study results. The gradient of a potential function,
as shown in the equation in Box 1, consists of that of the
FPE membership functions. Thus, the gradient of one FPE
membership function is regarded as its gradient. The gradient
of both one negative FPE and the combination between two
FPEs are studied in the next two subsections, respectively, for
revealing FPE action in detail.

3.1. One negative FPE

In this subsection, the FPE discussed is the most negative
FPE P̃−r . The most negative FPE is able to create the minimum
potential energy at one position where there is always the
goal position of a moving robot, and is important for robot
navigation. Therefore, P̃−r is discussed to reveal how to guide
a robot towards a goal position.

There are eight sub-regions covered by the membership
function µP̃−r

(·) as shown in Fig. 2. In Fig. 2, the gradient
directions are difference in each sub-region. Eight sub-regions
are defined as follows for conveniently interpreting its gradient
directions.

Definition 3. Let the FPE at cell Ci, j be P̃−r . Due to the
membership function µP̃−r

(·), W is divided into eight sub-
regions Wm (for m = 1, . . . , 8) as plotted in Fig. 4, where

W1: when (y − j) = 3(x − i) and (y − j) = −3(x − i),

W2: when (y − j) = (x − i)/3 and (y − j) 5 3(x − i),

W3: when (y − j) = −(x − i)/3 and (y − j) 5 (x − i)/3,

W4: when (y − j) = −3(x − i) and (y − j) 5 −(x − i)/3,

W5: when (y − j) 5 3(x − i) and (y − j) 5 −3(x − i),

W6: when (y − j) 5 (x − i)/3 and (y − j) = 3(x − i),

W7: when (y − j) 5 −(x − i)/3 and (y − j) = (x − i)/3,

W8: when (y − j) 5 −3(x − i) and (y − j) = −(x − i)/3.

The gradient directions of P̃−r are those of µP̃−r
(·) as

follows.
Fig. 4. The gradient directions of negative FPE P̃−r .

Definition 4. The gradient directions of the negative FPE P̃−r
are the gradient of its membership function µP̃−r

(·). Let Vm
be the gradient direction in Wm (m = 1, . . . , 8). Then using
Eq. (7) to calculate Eq. (4), the gradient directions of µP̃−r

(·)

are

V1 = −(2/3a)ŷ, V2 = −(1/2a)x̂ − (1/2a)ŷ,

V3 = −(2/3a)x̂, V4 = −(1/2a)x̂ + (1/2a)ŷ,

V5 = (2/3a)ŷ, V6 = (1/2a)x̂ + (1/2a)ŷ,

V7 = (2/3a)x̂, V8 = (1/2a)x̂ − (1/2a)ŷ,

where x̂ and ŷ are the unit vectors in the x and y directions,
respectively, and a is one half of the workspace length.

As depicted in Fig. 4, the gradient directions of P̃−r point
toward its central point which is always designated by the
goal position. P̃−r thus results in an attractive force to pull
the mobile robot toward its center. In contrast, FPE P̃r , whose
gradient directions point outward from its central point results
in a repulsive force. Consequently, P̃−r can pull a mobile robot
toward the goal position while P̃r can push a mobile robot to
stay away from an obstacle.

Remark 2. An FPE guides via eight directions Vm , for m =

1, . . . , 8, direction like quadtree-based approaches that a cell
is divided into four sub-cells to express that a region is free
or occupied by an obstacle. However, it is more sophisticated
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that FPEs P̃k (for k = −r, . . . , 0, . . . , r ) are of potential energy
level 2 × r + 1 than that quadtree-based approaches distinguish
each cell only by free or obstacle regions.

From Eq. (7), it is seen that it is insufficient for only one
FPE to pull or push a mobile robot. Because one FPE has only
one membership function, the membership functions of both
numerator and denominator eliminate each other as seen in
Eq. (7). Thus, the potential function becomes a constant value.
The gradient of a constant value is zero that cannot navigate any
mobile robot. A useful potential function should be constructed
by more than one FPE. The next subsection will study the
gradient directions of interaction between two negative FPEs in
order to construct the ground of many FPEs forming a particular
map.

3.2. Interaction between two negative FPEs

The gradient directions of two negative FPEs’ interaction are
described in the following property.

Property 1. The gradient directions of interaction between any
two negative FPEs point to the more negative FPE.

Proof. Without lost generality, consider P̃−r and P̃−r+ j (for
j = 1, . . . , r − 1). From the equation in Box 1, P̃−r and P̃−r+ j
form a potential function as follows

Eε(x, y)

=

(µP̃−r+ j
(·)(−r + j) + µP̃−r

(·)(−r))(∇µP̃−r+ j
(·) + ∇µP̃−r

(·))

(µP̃−r+ j
(·) + µP̃−r

(·))2

−

(µP̃−r+ j
(·) + µP̃−r

(·))(∇µP̃−r+ j
(·)(−r + j) + ∇µP̃−r

(·)(−r))

(µP̃−r+ j
(·) + µP̃−r

(·))2

=

−µP̃−r
(·)( j)∇µP̃−r+ j

(·) + µP̃−r+ j
(·)(r − 1)∇µP̃−r

(·)

(µP̃−r+ j
(·)µP̃−r

)2
. (8)

As shown in Eq. (8), the gradient of the potential function
becomes that of µP̃−r

(·) minus µP̃−r+ j
(·). That is, the gradient

directions of P̃−r minus P̃−r+ j are those of the interaction
between P̃−r and P̃−r+ j .

Let FPEs P̃−r and P̃−r+ j be assigned to C0,0 and C−q,q ,
respectively. Then, the cover range of µP̃−r

(·) and µP̃−r+ j
(·) is

respectively shown in Fig. 5. Fig. 5 also shows the overlapping
region for µP̃−r

(·) and µP̃−r+ j
(·). Inside the overlapping

region, the membership grades of both FPEs have values
simultaneously. Only inside this region both FPEs result in
interaction. Thus, the gradient directions of interacting between
P̃−r and P̃−r+ j are studied by their overlapping regions only.

As shown in Fig. 5, the overlapping region is divided into
fifteen sub-regions. Inside each one of the fifteen sub-regions,
the gradient of µP̃−r

(·) minus that of µP̃−r+ j
(·) are plotted in

Fig. 6, respectively. In Fig. 6, the gradient directions point
toward the central point of µP̃−r

(·). That is, the central point
of µP̃−r

(·) is the aimed point of the interaction between FPEs

P̃−r and P̃−r+ j . In summary, the gradient directions of the
interaction between two negative FPEs (P̃−r and P̃−r+ j ) point
to the more negative FPE (P̃−r ). �
Fig. 5. The overlapping region of FPEs P̃−r and P̃−r+ j .

Fig. 6. The interaction directions between the FPEs P̃−r and P̃−r+ j .

Remark 3. Unlike the quadtree-based approach that a cell only
has its individual action, either free or obstacle, any two cells
based on the FPE approach can be designed to have interaction
according to Property 1.

Property 1 is a main basis of assigning each FPE into a cell
in order to propose an FPE set to ground a spatial model in the
next section.

4. An FPE set

As mentioned above, only one FPE is unable to result in
gradient lines for robot navigation. In this section, an FPE set
stimulated for an applicable potential function is proposed and
then is analyzed by its gradient directions to show it is adequate
for robot navigation.

For robot navigation, the goal position designated with
P̃−r is always devised to have the minimum potential energy.
However, only one FPE does not result in an applicable
potential function. For cooperating P̃−r , the negative FPE P̃−1
is thus designated at the position away from the goal position.
This idea stimulates us to propose the FPE set as depicted in
Fig. 7. Fig. 7 shows that P̃−r is assigned to the central cell C0,0
which is the goal position, and four P̃−1 are assigned to the
four corner cells. From Property 1, the gradient directions of
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Fig. 7. An FPE set of the work space.

the FPE set points toward the goal position which possesses the
minimum FPE P̃−r . The gradient lines how to go ahead towards
the goal position from anywhere in the workspace are presented
by rigorous analysis as follows.

In Fig. 7, there are four FPEs P̃−1. Four P̃−1 will be
distinguished by their location under the following definition.

Definition 5. Let P̃−1 located at Ci, j be represented by P̃ i, j
−1 .

Then its membership function is expressed by µ
i, j
P̃−1

(·). In

addition, W i, j
m (for m = 1, . . . , 8) are the eight sub-regions

covered by the membership function, and V i, j
m is the gradient

direction inside W i, j
m (m = 1, . . . , 8).

Next, the gradient directions of the potential function formed
by the FPE set are studied. Because of one FPE P̃−r and four
FPEs P̃−1 in W , the equation in Box 1 becomes

Eε(x, y)

=

(µmax
P̃−1

(·)(−1) + µP̃−r
(·)(−r))(∇µmax

P̃−1
(·) +∇µP̃−r

(·))

(µP̃−r
(·)+ µmax

P̃−1
(·))2

−

(µmax
P̃−1

(·) + µP̃−r
(·))(∇µmax

P̃−1
(·)(−1) +∇µP̃−r

(·)(−r))

(µP̃−r
(·) +µmax

P̃−1
(·))2

=

−µP̃−r
(·)(r −1)∇µmax

P̃−1
(·) +µmax

P̃−1
(·)(r −1)∇µP̃−r

(·)

(µP̃−r
(·) +µmax

P̃−1
(·))2

(9)

where µmax
P̃−1

(x, y) is the maximum grade of the membership

functions of all fuzzy sets P̃−1, and ∇µmax
P̃−1

(x, y) is the gradient

of µmax
P̃−1

(x, y).

The gradient directions can be divided into two classes: the
interaction between the FPEs P̃−r and P̃−1 and the interaction
between two FPEs P̃−1 which are located at different positions.
The first class was solved using Property 1, namely the
interaction directions from P̃−1 to P̃−r . The second class can
be investigated by the first term of the numerator in Eq. (9),
−µP̃−r

(·)(r − 1)∇µmax
P̃−1

(·). Because there are four FPEs P̃−1 in
Fig. 8. Twelve sub-regions formed by four P̃−1 in the workspace and the
gradient direction in each sub-region.

the workspace,

∇µmax
P̃−1

(·) = ∇

{
max

(
µ

q,q
P̃−1

, µ
−q,q
P̃−1

, µ
−q,−q
P̃−1

, µ
q,−q
P̃−1

)}
, (10)

where µ
i, j
P̃−1

(·) is the membership function of the FPE P̃−1

assigned to the cell Ci, j , for i and j = −q or q. This term
shows that the interaction directions between two FPEs P̃−1 are
−∇µmax

P̃−1
(·). −∇µmax

P̃−1
(·) is stated by the following property.

Property 2. In the FPE set, the gradient directions of four
FPEs P̃−1 satisfy the following statements

(i) The membership functions µmax
P̃−1

(·) divide the workspace

into twelve sub-regions.
(ii) Let three sub-regions covered by the same membership

function in one corner cell be a group (e.g. −V −q,−q
1 ,

−V −q,−q
2 and −V −q,−q

3 belong to the group P̃−q,−q
−1 ).

Then, the gradient directions −∇µmax
P̃−1

(·) of the same group

point outward the center of its corner cell as depicted in
Fig. 8.

Proof. Four membership functions µ
i, j
P̃−1

(·) (i, j = −q or

q) intersect on the horizontal or vertical line. For example,
µ

−q,−q
P̃−1

(·) intersects with µ
q,−q
P̃−1

(·) on the vertical line and

with µ
−q,q
P̃−1

(·) on the horizontal line, respectively. In the

workspace, there are four areas thus dominated by µ
q,q
P̃−1

(·),

µ
−q,q
P̃−1

(·), µ
−q,−q
P̃−1

(·), and µ
q,−q
P̃−1

(·), respectively. The top-right

area is dominated by µ
q,q
P̃−1

(·), the top-left area is dominated

by µ
−q,q
P̃−1

(·), the bottom-right area is dominated by µ
q,−q
P̃−1

(·),

and the bottom-left area is dominated by µ
−q,−q
P̃−1

(·). Therefore,

inside the bottom-left area, Eq. (10) becomes

µmax
P̃−1

(·) = max
(
µ

q,q
P̃−1

, µ
−q,q
P̃−1

, µ
−q,−q
P̃−1

, µ
q,−q
P̃−1

)
= µ

−q,−q
P̃−1

.
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Fig. 9. The gradient directions of the FPE set in W7.
Fig. 10. The gradient directions of the FPE set inside W6.

In addition, each area is separated by its membership
function into three sub-regions. For example, in the bottom-
left area, the range of µ

−q,−q
P̃−1

is separated into W −q,−q
1 ,

W −q,−q
2 and W −q,−q

3 . The workspace is thus divided into
twelve regions. Statement (i) is then proven.

In each sub-region, the gradient directions of the FPE
P̃−1 can be found from the gradient directions of dominating
membership function. From Definition 5, the gradient
directions −∇µmax

P̃−1
(·) equal −V i, j

m , for i, j = −q or q,

and m = 1, . . . , 8. For instance, in the sub-regions W −q,−q
1 ,

W −q,−q
2 and W −q,−q

3 , the gradient directions of the FPE
P̃−1, −∇µ

−q,−q
P̃−1

(·) are −V −q,−q
1 , −V −q,−q

2 and −V −q,−q
3 ,

respectively. Fig. 8 depicts the gradient directions in each sub-
region. Statement (ii) is also proven. �

Finally, Properties 1 and 2 are utilized for analyzing the
gradient directions of the FPE set by dividing the workspace
into eight regions, Wm (for m = 1, . . . , 8), as plotted in Fig. 4.
Because the gradient directions of these eight regions have
symmetrical relationship, the following property only analyzes
regions W6 and W7. The rest of the regions can be derived from
the following property.

Property 3. Let W6 and W7 be divided into W7, j and W6,i
( j = 1, . . . , 4, and i = 1, 2, 3), as depicted in Figs. 9 and
10, respectively. The gradient directions of the FPE set in W6
and W7 point toward (0, 0) in the following cases:
Case (1): Inside W7 or W6,2, the gradient directions point
toward the horizontal line and then along the
horizontal line toward (0, 0).

Case (2): Inside W6,3, the gradient directions point toward the
vertical line and then along the vertical line toward
(0, 0).

Case (3): Inside W6,1, the gradient directions point toward
(0, 0) directly.

Proof. Case (1): This is about the gradient directions in W7 and
W6,2, respectively. Firstly, inside the sub-region W7, we have

µ
−q,q
P̃−1

(·) > µ
q,−q
P̃−1

(·), µ
−q,q
P̃−1

(·) > µ
q,q
P̃−1

(·)

µ
−q,−q
P̃−1

(·) > µ
q,−q
P̃−1

(·), and µ
−q,−q
P̃−1

(·) > µ
q,q
P̃−1

(·)

where µ
i, j
P̃−1

(·) is the membership function of the FPE P̃−1 in

Ci, j (i, j = −q, q). Therefore,

µmax
P̃−1

(·) = max
(
µ

q,q
P̃−1

, µ
−q,q
P̃−1

, µ
−q,−q
P̃−1

, µ
q,−q
P̃−1

)
= max

(
µ

−q,q
P̃−1

(·), µ
−q,−q
P̃−1

(·)
)

.

W7,1 and W7,2 belong to the top-left area of the workspace,
and are dominated by µ

−q,q
P̃−1

. Similarly, W7,3 and W7,4 are

dominated by µ
−q,−q
P̃−1

. Thus,

µmax
P̃−1

(x, y) = µ
−q,q
P̃−1

(x, y) if (x, y) ∈ W7,1 or W7,2,

and

µmax
P̃−1

(x, y) = µ
−q,−q
P̃−1

(x, y) if (x, y) ∈ W7,3 or W7,4.

Moreover, ∇µP̃−r
= V7. As depicted in Fig. 8,

−∇µ
i, j
P̃−1

(x, y) = −V i, j
m if (x, y) ∈ W i, j

m

(i, j = −q or q and m = 1, . . . , 8). (11)

Therefore, Eq. (9) becomes

Eε(x, y) =

−µP̃−r
(·)(r − 1)V i, j

m + µmax
P̃−1

(·)(r − 1)V7( ∑
k=−r,−1

µmax
P̃k

(·)

)2 (12)
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(m = 4, 5 if (i, j) = (−q, q); m = 1, 2 if (i, j) = (−q, −q)).
As shown in Fig. 9(a), W7,1 overlaps with W −q,q

5 . Thus, V i, j
m =

V −q,q
5 . Substituting the result into Eq. (12), we have

Eε(x, y) =

−µP̃−r
(·)(r − 1)V −q,q

5 + µmax
P̃−1

(·)(r − 1)V7( ∑
k=−r,−1

µmax
P̃k

(·)

)2 . (13)

Eq. (13) implies that inside W7,1, the gradient directions are the
sum of the vectors −V −q,q

5 and V7. This result is V7,1 as shown
in Fig. 9(b). Similarly, V7,2, V7,3, and V7,4 are the gradient di-
rections of the FPE set inside W7,2, W7,3, and W7,4, respec-
tively. In Fig. 9(b), V7,i (i = 1, . . . , 4) show that the gradient
directions of the FPE set inside W7 point at the horizontal line
and then go along the horizontal line toward (0, 0).

Secondly, inside W6,2, we have

µ
−q,−q
P̃−1

(·) > µ
q,−q
P̃−1

(·), µ
−q,−q
P̃−1

(·) > µ
q,q
P̃−1

(·), and

µ
−q,−q
P̃−1

(·) > µ
−q,q
P̃−1

(·).

Thus,

µmax
P̃−1

(·) = µ
−q,−q
P̃−1

(·), and

−∇µmax
P̃−1

= −µ
−q,−q
P̃−1

= −V −q,−q
1 . (14)

Because W6,2 belongs to W6,

∇µP̃−r
= V6. (15)

Substituting (14) and (15) into (9), we have

Eε(x, y) =

−µP̃−r
(·)(r − 1)V −q,−q

1 + µmax
P̃−1

(·)(r − 1)V6( ∑
k=−r,−1

µmax
P̃k

(·)

)2 . (16)

Eq. (16) shows that inside W6,2, the gradient direction V6,2,
as depicted in Fig. 10(b), is the summation of the vectors
−V −q,−q

1 (·) and V6, which goes toward W7,3. As shown in
Fig. 9(b), the gradient directions of the FPE set in W7,3 point
at the horizontal line and then follow the horizontal line toward
the goal point. Thus, inside W7,3, W6,2, the gradient directions
point at the horizontal line and then follow the horizontal line
toward the goal point.

Case (2): This is about the gradient directions inside the sub-
region W6,3, which belongs to W −q,−q

3 . Thus,

µmax
P̃−1

(·) = µ
−q,−q
P̃−1

(·), and

−∇µmax
P̃−1

= −∇µ
−q,−q
P̃−1

= −V −q,−q
3 . (17)

Substituting (17) into (9), we have

Eε(x, y) =

−µP̃−r
(·)(r − 1)V −q,−q

3 + µmax
P̃−1

(·)(r − 1)V6( ∑
k=−r,−1

µmax
P̃k

(·)

)2 . (18)
Fig. 11. The potential energy distribution of the FPE set in the workspace.

Eq. (18) shows that the gradient directions V6,3 as depicted in
Fig. 10(b) are the summation of −V −q,−q

3 (·) and V6, which
points at the vertical line and then follows the vertical line to-
ward (0, 0).

Case (3): This is case about the gradient directions inside
W6,1. In this region, we have

µmax
P̃−1

(·) = µ
−q,−q
P̃−1

(·), and

−∇µmax
P̃−1

= −∇µ
−q,−q
P̃−1

= −V −q,−q
2 . (19)

In addition,

∇µP̃−r
= V6, and

V6 = −V −q,−q
2 . (20)

(Both in same direction as shown in Fig. 10(b).)
Substituting Eqs. (19) and (20) into Eq. (9), we have

Eε(x, y) =

−µP̃−r
(·)(r − 1)V −q,−q

2 + µmax
P̃−1

(·)(r − 1)V6( ∑
k=−r,−1

µmax
P̃k

(·)

)2

=

[µP̃−r
(·)(r − 1) + µmax

P̃−1
(·)(r − 1)]V6( ∑

k=−r,−1
µmax

P̃k
(·)

)2 . (21)

Eq. (21) shows that inside W6,1, the gradient direction V6 di-
rectly points toward (0, 0) as depicted in Fig. 10(b). �

Property 3 can be extended to take the gradient directions of
the FPE set inside the rest regions, W1, . . . , W5, and W8. The
gradient directions inside W3 are similar to those inside W7, but
pointing toward (0, 0) from different directions: one from right
to left (inside W3), and the other from left to right (inside W7).
W1 and W5 are also similar to W7, but the gradient directions
point toward the vertical line and then follow it toward (0, 0).
In addition, W2, W4, and W8 are similar to W6. In the
entire workspace, the gradient directions of the FPE set are
thus obtained. From the computer simulations, Fig. 11 is the
potential energy distribution of the FPE set in the workspace,
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Fig. 12. The gradient directions of the FPE set in the workspace.

and Fig. 12 is the gradient directions of the FPE set. Simulation
results also demonstrate the FPE set can navigate a mobile robot
toward (0, 0), the goal position.

The FPE set grounds a special map using FPEs P̃−1 and P̃−r .
There are four P̃−1 and one P̃−r in the map that can guide a
mobile robot towards the goal point C0,0 from any direction. In
a practice application, a map built does not need four P̃−1s,
but only one P̃−1 and one P̃−r are enough to form a guide
field. The application examples in the next section just use one
P̃−1 and one P̃−r to ground the basis of a map. Other FPEs are
designated at the other cells in the map to guide a mobile robot
for avoiding obstacles and then going towards a goal point.

The map contains cells (2 × q + 1)2 to store environment
information. Such an approach like [13] uses square grid cells,
but the cells containing an FPE result in more sophisticated
functions to guide robots. The functions include two kinds. The
first kind is one FPE action that guides robots to approach a
negative one and/or to leave a positive one via eight directions
V j , for j = 1, . . . , 8. A function of this kind is similar to
a quadtree-based approach that guides forward only four near
cells like four directions. It is more efficient to guide robots
in eight directions by the FPE approach. The second kind is
the interaction between two different FPEs that guides from
large to small as seen in Property 1. A function of this kind is
similar to a framed-quadtree approach [7] that guides from one
cell to other cells. Compared to a framed-quadtree approach
that guides towards other cells via the cell boundary, it is more
flexible that the FPE guides via vector summation of two FPE
gradient directions.

Remark 4. The FPE approach to robot navigation builds a map
that FPEs are assigned to the cells between P̃−1 and P̃−r to form
a potential energy distribution map by which a mobile robot
can be guided to leave obstacles and then to go towards a goal
position. It is convenient to plan tasks by assigning FPEs into
the cell in a workspace for the navigation path. The next section
will explain how to extend the planning of the path to that of
tasks.

5. FPE design for the planning of path and tasks

In this section, FPEs are classified for conveniently
constructing FPE maps. The detailed design is shown step by
step by constructing maps to present how to solve different
tasks in the same environment situations. Gradient trajectories
(the planned paths) showing how to guide a mobile robot
towards the goal point are also included.

FPE can be separated into three classes. The first class is the
negative FPEs P̃−r and P̃−1 that are used for the proposed FPE
set as described in the previous section. As shown in Property 3,
the FPE set results in a potential function whose gradient
directions point towards the goal point. The second class is the
positive FPE P̃r that is applied to push a mobile robot so that
it stay away from obstacles. The third class is the moderate-
negative FPEs P̃k (for k = −r + 1, . . . ,−2) that are employed
to adjust the potential energy distribution between P̃−r and
P̃−1. Relying on Property 1, the moderate-negative FPEs of
distinct level are located at the different cells where a mobile
robot would like to finish a sequence move for a task. For
showing the merits of design of the moderate-negative FPEs,
there are three examples in the following: the first example for
navigating to cross a door or a corridor; the second example
for navigation to avoid or to escape a cul-de-sac; and the last
example for navigation to conduct a sequence of tasks. The
third class of FPE design shows the main contribution of this
paper.

Example 1. Navigation for crossing a door or a corridor.
This example demonstrates that it is easy to conduct the tasks

for crossing a door or a corridor by Figs. 13 and 14, respectively.
As shown in Fig. 13(a), the cells occupied by the corridor or
the door are assigned by P̃r to push mobile robots far away.
For guiding mobile robots going through the corridor, the goal
position cell C−3,−2 and its entrance cell C−3,−8 are assigned
by P̃−r and P̃−2, respectively, to form gradient lines that do
not cross the door. Fig. 13(b) shows the gradient trajectories as
the desired planning exactly cross the corridor without hitting
obstacles, the corridor and the door. Moreover, for guiding a
mobile robot going the other way, through the door, the goal
cell C−8,−2 and the door entrance cell C−8,−8 are assigned by
P̃−r and P̃−2, respectively, as shown in Fig. 14(a). The gradient
trajectories, as shown in Fig. 14(b), cross through the door as
the desired planning.

Remark 5. The qualitative information such as a door, a
corridor and their entrances can be lent to navigate a mobile
robot for conducting the tasks, crossing either a door or a
corridor. Besides, task navigation exactly results in appropriate
paths. A map built by the FPE provides a way to make use of
qualitative information for appropriate paths guiding a mobile
robot to arrive at a goal position.

Example 2. Navigation for avoiding or escaping a cul-de-sac.
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Fig. 13. FPE layout and gradient lines for going through a corridor.
Fig. 14. FPE layout and gradient lines for going through a door.
There are two situations discussed in the example: the
mobile robot inside or outside the cul-de-sac. As outside, the
task of navigation is to guide a mobile robot going around
the cul-de-sac for a goal position. But, that of navigation from
inside is a guide for escaping the cul-de-sac and then for going
to a goal position. This example illustrates that it is very simple
for the FPE to solve these two distinct tasks under different
situations.

As outside, preventing a mobile robot from entering the
cul-de-sac obstacle and then guiding towards the goal position
are the task of navigation. However, many paths satisfy this
requirement. Selecting the paths becomes the key-point of the
moderate-negative FPEs’ design. Here a visibility graph, the
shortest path of global path planning strategy, is cited to select
such a path as shown in Fig. 15. In Fig. 15, the dashed lines are
the shortest path for avoiding the U-shaped obstacle. Therefore,
except P̃−r and P̃−1 assigned to adequate cells, two moderate-
negative FPEs should locate at the vertices’ cells of the cul-de-
sac so that the created gradient directions not only point away
from the cul-de-sac and then go towards the goal position, but
also follow the shortest path. Which moderate-negative FPE
located at which vertex’s cells is based on a relative quantity
compared with the FPEs at the previous and next cells in the
planned path. Because the previous and next cell FPEs are P̃−1

and P̃−r , respectively, P̃−2 is selected into the vertex cells so
that the formed potential field flows forward P̃−r ’s position, the
goal position. Fig. 16 shows their gradient trajectories due to
miscellaneous initial positions. As shown in Fig. 16, regardless
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Fig. 15. The FPE layout for avoiding the cul-de-sac.

Fig. 16. The gradient trajectories due to different start positions.

Fig. 17. The FPE layout for escaping the cul-de-sac.

of their initial position, the gradient trajectories go away from
the obstacle and then arrive at the goal position.
Fig. 18. The gradient trajectories for escaping the cul-de-sac and then for going
towards the goal position.

Remark 6. The FPE map makes path planning strategy
implemented for conducting a task easy. However how well the
path is planned depends on how clear the knowledge possessed
by an expert human is. In this case, assume that an expert human
owns the knowledge to derive a visibility graph for a robot
in a workspace. Then, the FPE map is built according to the
visibility graph for avoiding dropping into the trap in a cul-de-
sac, and for arriving at the goal position.

As inside, the mobile robot is dropping into the trap in
the cul-de-sac. The navigation of general global path planning
strategy should lead the mobile robot to first leave the trap
and then to go towards the goal position. Because they result
in the trap in the cul-de-sac, the negative FPEs P̃−r and P̃−2
must be eliminated for neglecting the goal position and obstacle
avoidance. After eliminating P̃−r and P̃−2, as shown in Fig. 17,
another P̃−2 is assigned to the cell at the exit of the cul-de-
sac for leaving the trap. After leaving the trap, i.e., arriving
at the outside of the cul-de-sac, the FPE should navigate the
mobile robot for obstacle avoidance and the goal point. Hence,
the FPE layout is switched to Fig. 15 so that the mobile robot is
navigated to stay away from the cul-de-sac and then go toward
the goal point. Fig. 18 shows such gradient trajectories due to
various initial positions from inside the cul-de-sac.

Remark 7. The FPE map makes navigation of the robot for
conducting a sequence of tasks possible. In this case, a robot
for conducting tasks switching between escaping the cul-de-sac
trap and going towards the goal position is navigated by simply
adjusting the FPE layout in the map.

Example 3. Navigation for a sequence of tasks.
The third example demonstrates that a sequence of tasks is

navigated by assigning the FPE layout easily. In this example,
there are two cases: one for avoiding the cul-de-sac through the
door; and the other for that through the corridor. By placing
FPEs at appropriate locations, the navigation paths produced
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Fig. 19. Navigation paths going through the door or the corridor.
are shown in Fig. 19. Fig. 19(a) and (b) show navigation paths
going through the door and through the corridor, respectively.

In summary, FPE assignment can according to the
requirement of task navigation be based on qualitative
information of a spatial model. There are two meaningful key
points in FPE design. The first is that the FPE provides a
way to make use of qualitative information for task navigation.
The FPE navigation actually resulting in paths for conducting
its tasks is the second of the key points. Such ideas are
similar to Navigation templates including Substrate Navigation
Templates (s-NaTs) and Modifier Navigation Templates (m-
NaTs). The positive FPEs like M-NaTs are designed to avoid
obstacles. One positive FPE pushes a mobile robot far away
from an obstacle via eight directions, but m-NaTs via two
directions, clockwise or counterclockwise. Unlike s-NaTs just
guiding a task direction, many negative FPEs can be combined
to guide a mobile robot following a complicated paths as shown
in Fig. 19. In particular, expert knowledge such as visibility
graphs can be implemented by FPEs for task navigation. This
is the main advantage of the proposed FPE.

6. Conclusions and further development

In this paper, the FPE is proposed for building a special map
that not only can form a potential field to navigate a mobile
robot for a goal position like the potential field approach but
can also utilize qualitative information for task navigating and
conducting. Gradient trajectories of a built map are actual paths
guiding a mobile robot to a goal position. The proposed FPE
extends navigating from path to task.

It is easy for the proposed FPE to exchange tasks for a robot
in different situations, for example a robot inside or outside a
cul-de-sac. This is a way to solve a robot in inconstant situation
for different tasks. In summary, the proposed FPE has the
following advantages:

(1) The effective range of the FPE can be changed by adjusting
the range of its membership function, e.g. the range of the
most positive FPE P̃r only covers its neighborhood cells so
that the resulting force repels mobile robots to stay away
from the cells occupied by obstacles. In contrast, to attract
mobile robots at any position in a workspace, the range of
the most negative FPE P̃−r covers the entire workspace.
The range of membership function solves the lack of local
view of the potential field approach.

(2) The potential function formed by the FPE can be adjusted
by replacing one cell’s FPE. Compared to the potential
field approach, the defined FPE is more flexible. In this
paper, qualitative information such as the entrance and exit
of a door, a corridor and a cul-de-sac and vertex points
is engaged as the ground for locally adjusting potential
distribution by negative FPEs.

(3) Via the FPE, the local path planning strategy can introduce
the knowledge of a human expert for more sophisticated
path planning strategy such as Example 2. In Example 2,
visibility graphs usually based on expert knowledge are
engaged to construct FPE maps for avoiding or escaping
a cul-de-sac.

(4) It is easy for the FPE map to conduct robot navigation of a
sequence of tasks illustrated in Example 3.

Based on the second type of fuzzy modeling, the FPE
paves a way to convert qualitative information of a spatial
model into metric information for task navigation. The map
built by the FPE leads much human thinking injected into
navigation such as navigation for a sequence of tasks illustrated
in Example 3. In addition, just as imitating the visibility graph
as depicted in Fig. 15, the FPE is able to combine many human
requirements into task navigation. Task navigation that satisfies
human requirements may be named intelligent navigation. This
paper stimulates a further way to develop fuzzy modeling for
intelligent navigation.
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