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Abstract. This paper describes a novel system for enabling a humanoid
robot to balance on highly dynamic terrain using fuzzy logic. We evaluate
this system by programming Jimmy, a small, humanoid DARwIn-OP
robot, to balance on a bongo board – a simple apparatus consisting of a
deck resting on a free-rolling wheel – using our novel fuzzy logic system
and a PID controller based on our previous work (Baltes et al. [1]). Both
control algorithms are tested using two different control policies: “do the
shake,” wherein the robot attempts to keep the bongo board’s deck level
by CoM manipulation; and “let’s sway,” wherein the robot pumps its
legs up and down at regular intervals in an attempt to induce a state of
dynamic stability to the system. Our experiments show that fuzzy logic
control is equally capable to PID control for controlling a bongo board
system.

1 Introduction

In this paper we present a fuzzy logic control system for controlling a humanoid
robot standing on a bongo board. This is a continuation of our previously-
published research [1] into active balancing on highly-dynamic surfaces using
Jimmy1, a DARwIn-OP humanoid robot.

For humanoid robots to be useful in the broadest possible applications they
must be able to traverse all manner of terrain without falling. While recent devel-
opments in hardware and software have seen humanoid robots improve dramat-
ically in capabilities when traversing mostly-level ground with good traction –
e.g. between 2009 and 2013 the world record for the HuroCup sprint event2 has
improved from 01:07.50 to 00:25.50 [2] – the ability to traverse arbitrary terrain
with unknown traction remains beyond the state-of-the-art.

In order to analyse the problems of active balancing on unknown and unstable
terrain we selected the bongo board, a simple apparatus consisting of a deck with
1 Jimmy is named after Jimmy Ball of Dauphin, Manitoba, winner of the Silver Medal

in the 400m sprint at the 1928 Olympics, and the Bronze Medal in the 4 × 400 m
relay at the 1928 and 1932 Olympics.

2 In the HuroCup sprint event the robots must walk or run 3 m forward followed by
3 m backwards.
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a single free-rolling wheel positioned below it, as a sample problem. A humanoid
robot stands on top of the board and must control their CoM in such a way as to
keep the bongo board’s wheel centred and prevent the ends of the bongo board
from striking the ground. Figure 1 shows a robot on the bongo board.

Fig. 1. Jimmy stand-
ing on a bongo board.
(Baltes et al. [1])

The remainder of this paper is organised as follows:
Sect. 2 presents an analysis of the bongo board and how
it relates to the well-known inverted pendulum problem.
Here we also discuss our previous research using PID con-
trol to balance the bongo board. Section 3 describes a
fuzzy logic system for controlling a humanoid robot on
a bongo board directly inspired by a solution for the
inverted pendulum problem. We summarise our experi-
mental procedure and perform a quantitative analysis of
the performance of the fuzzy logic controller compared
to our previous PID-based solution in Sect. 4. Finally we
discuss practical applications of this research and provide
avenues of future research in Sect. 5.

2 Analysis and Related Work

This section provides a brief analysis of the cart-and-rod problem and how
it relates to the bongo board. The development of a Fuzzy Logic system for
controlling a cart-and-rod inverted pendulum is summarised. Finally we dis-
cuss our earlier work in controlling a humanoid robot on a bongo board,
including a Proportional-Integral-Derivative (PID) controller-based system by
Baltes et al. [1].

2.1 Analysis of the Inverted Pendulum

The inverted pendulum problem is a well-known problem in control theory
wherein a mass m is placed at the top of a rigid rod of length l. The other
end of the rod is connected to a fulcrum inside a powered cart. The goal of the
system is to control the forward velocity of the cart in such a way as to keep the
mass and rod upright.

Figure 2 shows the classic cart-and-rod inverted pendulum problem and the
forces acting on the system. Gravity, g, pulls down on the mass, applying torque
τ at the fulcrum. The cart accelerates at a(t), bringing the fulcrum towards the
mass and applying torque to counteract τ .

Many solutions for the inverted pendulum problem have been demonstrated
including PID controllers [3], reinforcement learning [4,5], and fuzzy logic [6,7].

2.2 Fuzzy Logic Control for Inverted Pendula

Yamakawa demonstrated that a simple set of fuzzy implications could be used
to balance a cart-and-rod inverted pendulum [7]. In his implementation the cart
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Fig. 2. The cart-and-rod inverted pendulum problem. A mass m is placed on a rod
of length l anchored to a fulcrum inside a mobile cart. Gravity g acts on the mass,
applying torque τ and pulling the mass down. The cart accelerates at a rate of a(t) to
keep the fulcrum positioned below the mass and keep the rod in an upright position.

is powered by a simple electric motor, with the speed ẏ determined by the
voltage supplied to the motor. His fuzzy rules take the inclination, θ, and angular
velocity, θ̇, of the pendulum as inputs and outputs the horizontal velocity of the
cart, ẏ, as shown in Algorithm 1. Yamakawa’s implementation defines seven fuzzy
input and output sets: Positive Large (PL), Positive Medium (PM), Positive
Small (PS), Near-Zero (ZR), Negative Small (NS), Negative Medium (NM), and
Negative Large (NL). Rules are not defined for states where the system is highly
unstable (e.g. θ and θ̇ are both positive-large). Because the goal of the fuzzy
control system is to keep the cart-and-rod in a relatively stable state with θ and
θ̇ being small we can make the assumption that the system is working correctly
when implementing these rules. If the system is in a relatively unstable state then
the control system has already failed its stated purpose. Therefore Yamakawa’s
rules do not define any behaviour for situations when the rod is severely inclined
(e.g. θ is NL) or when the rod is falling quicky (e.g. θ̇ is PL).

Algorithm 1. Yamakawa’s fuzzy rules for controlling a cart-and-rod inverted
pendulum. (Yamakawa [7])

if θ is PM and θ̇ is ZR then
ẏ is PM

end if
if θ is PS and θ̇ is PS then

ẏ is PS
end if
if θ is PS and θ̇ is NS then

ẏ is ZR
end if

if θ is NM and θ̇ is ZR then
ẏ is NM

end if
if θ is NS and θ̇ is NS then

ẏ is NS
end if

if θ is NS and θ̇ is PS then
ẏ is ZR

end if
if θ is ZR and θ̇ is ZR then

ẏ is ZR
end if

2.3 Analysis of the Bongo Board

The bongo board can be seen as a variation of the cart-and-rod problem, only
instead of the cart controlling the motion of the mass above the cart the rider
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controls the motion of the deck and wheel below them. A bongo board system
is shown in Fig. 3, illustrating the major variables at work in the system.

Fig. 3. An idealised bongo board in an unstable position with the rider. The rider’s
torso is offset horizontally by xtorso and vertically by ytorso with respect to the midpoint
between the robot’s feet. The legs have been adjusted to lengths yR and yL for the
right and left legs respectively. φr gives the inclination of the rider due to the difference
in heights of the legs. The arms have been set to angles θR and θL with respect to the
right and left shoulders. The robot’s CoM, m, is offset from the torso because of the
arm positions. θ denotes the inclination of m with respect to the line drawn from the
midpoint between the robot’s feet. θm denotes the angle between m and the point of
contact between the deck and the wheel. The distance from this point of contact and
m is given by l. The deck is inclined by φ from the horizontal. (Baltes et al. [1])

The rider is assumed to have five degrees of freedom they can use to exert
forces on the system: the angle of each shoulder in the frontal plane (θL and θR

for the left and right shoulders respectively), the lateral and vertical offsets of
the torso (xtorso and ytorso respectively), and the angle of inclination of the torso
relative to the deck (φr). Humans observed balancing on a bongo board tend to
rely on lower-spine and hip mobility to control φr. Many humanoid robots lack
this level of torso flexibility, but may independently control the length of each
leg by extending or contracting the knee to control φr [1].

Unlike the cart-and-rod inverted pendulum, the bongo board does not have
a fixed fulcrum; the point of contact between the deck and the wheel translates
along the deck as the wheel rolls from side-to-side and as the deck rotates around
the periphery of the wheel. This means that, in the absence of forces exerted by
the rider, two events will occur:
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1. the deck will rotate under the effect of gravity, following the same principle
as the falling mass in the cart-and-rod problem; and

2. the deck will roll downhill along the wheel, mimicking the effect of a mass
sliding down an inclined plane.

Figure 4 shows a simplified bongo board in an unstable position. The passive
rider (i.e. a rider exerting no forces on the system) has been replaced with a
point-mass positioned at height l above the deck. As gravity pulls the mass down
the deck rotates around the wheel with torque τ . This rotation causes lateral
force Fα as the falling mass forces the pivot-point to translate. Finally, because
the deck is inclined gravity will pull the entire deck-rider assembly downhill with
force Fθ. The equations for τ , Fα, and Fθ are given below:

Fig. 4. An idealised bongo board in an unstable position. θ shows the rider’s inclination
relative to the deck, while θm shows the rider’s inclination relative to the point of
contact between the wheel and the deck. θr gives the rider’s torso’s absolute inclination.
The mass, m lies at height l above the deck. As the bongo board falls the mass rotates
downward applying force Fα to the system, while the entire mass-rod-deck assembly
slides downhill, applying Fθ to the system. l′ gives the distance from the point of
contact between the wheel and the deck to the rider’s CoM.

τ = gml′ sin θm (1)

Fα = ml(θ̈m cos θm − θ̇2m sin θm) (2)

Fθ = mg cos θm (3)

By rotating the arms in the frontal plane, shifting the torso’s CoM, and
inclining the torso relative to the deck the rider exerts several forces and moments
on the system that counteract τ , Fα, and Fθ.

2.4 Control Systems for the Bongo Board

Because of the complex nature of the bongo board relatively few practical imple-
mentations capable of balancing the system exist. Anderson and Hodgins [8]
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demonstrated that it is possible for a small humanoid robot to balance on a
deck attached to a fixed pivot point using an adaptive torque-based approach.
McGrath et al. [9] showed that active balancing and correction for inclination
with a small humanoid robot using gyroscope feedback was possible. Other work
in the area of balancing in highly-dynamic environments are primarily theoret-
ical [10,11]. While push-recovery strategies, such as Pratt et al.’s work [12],
are useful for traversing unstable terrain, they rely on the ground providing
a consistent normal force to arrest the robot’s movement. Because the bongo
board’s deck is unsupported, except for the area in contact with the wheel, foot-
placement strategies alone are insufficient for keeping the bongo board system
stable.

Baltes et al. [1] demonstrated the first practical implementation of a
humanoid robot capable of balancing on a bongo board. Their implementation
uses PID controllers to adjust five degrees of freedom: the angle of each shoulder
in the frontal plane, the vertical and horizontal positions of the torso’s CoM
relative to the deck, and the inclination of the robot’s torso. Figure 5 shows how
the robot’s CoM is controlled; by extending or contracting the legs the CoM is
moved vertically; by adjusting the lengths of the legs and rotating the hips and
ankles in the frontal plane the CoM can be moved horizontally; and by contract-
ing one leg while extending the other the robot can incline its entire torso to the
left or right.

Fig. 5. Diagrams showing how the rider in the neutral position (extreme left) and how
it uses the joints in the legs and hips to raise/lower its CoM (centre-left), shift its CoM
side-to-side (centre-right), and incline its torso (extreme right).

Baltes et al. [1] propose three different control policies, dubbed “stiff upper
lip,” “do the shake,” and “let’s sway,” each using a slightly different set of control
laws and motions. The “stiff upper lip” policy was determined to be ineffective,
but “do the shake” and “let’s sway” were both able to control the bongo board
for short periods of time.

Baltes et al.’s control policies use PD controllers to control the robot’s arm
and torso rotation. In Eqs. 4 and 5 the terms Kap

and Kad
refer to the P- and

D-gains used to control the arms, while Ktp
and Ktd

refer to the P- and D-gains
used to control the inclination of the torso. All gains were manually tuned.

The “do the shake” policy consists of two PD controllers that independently
control the robot’s torso inclination and arm rotation. To compensate for sensor
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latency a linear predictive sensor model [13] to extrapolate the robot’s current
state based on previous sensor readings. If the predicted inclination and angular
velocity are small then the torso inclination is left alone and the arms are spun
to make small corrections. If the predicted inclination or angular velocity is large
the arms and torso inclination are both used to correct the robot’s motion. The
control law used for the “do the shake” policy is given in Eq. 4.

θ′
torso = predicted(θtorso, θ̇torso)
darms = Kap

θ′
torso + Kad

θ̇′
torso

θtorso = Ktp
θ′

torso + Ktd
θ̇′

torso

(4)

The “let’s sway” policy was largely identical to “do the shake” save for the
addition of a regular oscillation to the robot’s motion; the legs continuously
pump up and down in an attempt to induce a state of dynamic stability to the
system. The control law for the “let’s sway” policy is given in Eq. 5.

θ′
torso = predicted(θtorso, θ̇torso)

θdesired = sin(ωt)
darms = Kap

(θ′
torso − θdesired) + Kad

(θ̇′
torso − θ̇desired)

θtorso = Ktp
(θtorso − θdesired)′ + Ktd

(θ̇′
torso − θ̇desired)

(5)

Based on the angular velocity and inclination of the robot’s torso as recorded
during several trials using all three control policies and through qualitative obser-
vations Baltes et al. concluded that the introduction of a regular oscillation from
the “let’s sway” policy improved the robot’s overall stability, albeit not in a sta-
tistically significant way.

3 Fuzzy Rules for the Bongo Board

Based on Yamakawa’s rules for the cart-and-rod inverted pendulum and
Baltes et al.’s PID-based system for controlling the motion of a bongo board
we define a set of rules to control the five degrees of freedom that the bongo
board’s rider uses:

– θ, the angle from the deck to the rider’s centre of mass;
– xtorso, the lateral offset of the rider’s torso;
– ytorso, the vertical offset of the rider’s torso;
– θL, the angle of the rider’s left shoulder; and
– θR, the angle of the rider’s right shoulder.

As with Yamakawa’s rules, we define our rules such that the rate of change of
each degree of freedom is output. For simplicity we control the angular velocity
of both arms simultaneously. Therefore the fuzzy rules specify the angular veloc-
ity of both arms as a single output. The fuzzy rules defined for balancing the
bongo board are shown in Algorithm2, using the same abbreviations described
in Sect. 2.2.
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The fuzzy rules use the inclination and angular velocity of the bongo board’s
deck, φ and φ̇ respectively, as inputs. Given knowledge of the robot’s torso’s
inclination and angular velocity and the current positions of the joints in robot’s
legs the inclination and angular velocity of the deck can be trivially calculated.

The fuzzy rules output the desired angular velocity of the arms (θ̇arm) and
the torso (θ̇) as well as the linear velocities of the rider’s CoM along the x-axis
(parallel to the deck of the bongo board) and y-axis (perpendicular to the deck
of the bongo board).

We set the PS, NS, PM, and NM thresholds for φ and φ̇ based on the data
recorded during our initial research with PID controllers [1]. The thresholds
for the output variables (θ̇arm, ẋ, ẏ, and θ̇) were determined experimentally by
placing the robot on the bongo board and observing its behaviour, increasing or
decreasing each threshold based on the robot’s performance and the sensor data
recorded. In all cases the ZR threshold was left at zero.

Algorithm 2. Linguistic rules for balancing a bongo board.

if φ is ZR and φ̇ is ZR then
θ̇arm is ZR
ẋ is ZR
ẏ is ZR
θ̇ is ZR

end if
if φ is NS and φ̇ is PS then

θ̇arm is ZR
ẋ is ZR
ẏ is ZR
θ̇ is ZR

end if
if φ is PS and φ̇ is NS then

θ̇arm is ZR
ẋ is ZR
ẏ is ZR
θ̇ is ZR

end if

if φ is PS and φ̇ is PS then
θ̇arm is NS
ẋ is ZR
ẏ is ZR
˙phi is NS

end if
if φ is NS and φ̇ is NS then

θ̇arm is PS
ẋ is ZR
ẏ is ZR
θ̇ is PS

end if

if φ is PM and φ̇ is ZR then
θ̇arm is NM
ẋ is NS
ẏ is NS
θ̇ is NM

end if
if φ is NM and φ̇ is ZR then

θ̇arm is PM
ẋ is PS
ẏ is PS
θ̇ is PM

end if

These rules specify that when the deck is inclined one direction, but the
angular velocity is in the opposite direction the system should produce near-
zero outputs; when the bongo board is either in a stable position, or is self-
stabilizing (i.e. rotating in such a way that the deck becomes more level) the
system should allow this process to continue uninterrupted. The vertical and
horizontal torso offsets are only used when the system is highly unstable; these
DOFs are used only as a last-resort to stabilise the system when arm motion
and torso inclination prove insufficient.

4 Evaluation

To evaluate the performance of the fuzzy logic controller compared to
Baltes et al.’s PID-based system we perform five 30-second trials using the PID
and fuzzy logic controllers using both the “let’s sway” and “do the shake” con-
trol policies. Due to the low success rate of the “stiff upper lip” policy reported
by Baltes et al. [1] we omit this control policy from our experiment. These trials
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Table 1. Minimum, maximum, and average deck inclination and difference in inclina-
tion from the previous tick. Measurements are in ◦ and ◦/tick (1 tick ≈ 8 ms).

Do the shake policy

Control algo-

rithm

Min φ Max φ Average φ σ Min φ̇ Max φ̇ Average φ̇ σ

PID −41.7816 46.9645 −2.6833 9.1060 −22.7700 28.4904 1.917×10−3 1.5709

Fuzzy logic −34.2622 42.1050 −0.7879 7.4964 −24.0847 22.7207 1.629×10−15 1.6288

Min θ Max θ Average θ σ Min θ̇ Max θ̇ Average θ̇ σ

PID −42.5811 46.9645 −2.6620 9.1182 −24.3399 28.4904 −0.0010 1.6141

Fuzzy logic −34.2668 42.1050 −0.8253 7.6646 −23.7593 23.2903 −0.0022 1.5821

Let’s sway policy

Control algo-

rithm

Min φ Max φ Average φ σ Min φ̇ Max φ̇ Average φ̇ σ

PID −44.6387 41.6949 −2.8597 8.9129 −67.7595 68.3437 4.125×10−15 2.1396

Fuzzy logic −36.7589 43.0499 −1.2893 9.4946 −20.0433 21.6206 −3.332 × 10−14 2.5342

Min θ Max θ Average θ σ Min θ̇ Max θ̇ Average θ̇ σ

PID −44.3100 42.4191 −2.8706 8.8555 −68.0614 68.0614 −0.0010 2.1837

Fuzzy logic −36.9610 44.4448 −1.4046 10.3874 −21.8892 19.1989 −0.0004 2.4143

are performed using a physical robot standing on a wooden bongo board, as
shown in Fig. 1. During the trials the robot operates on battery power with no
external cables (e.g. power, ethernet) connected. A human operator is present
to reset the apparatus should the bongo board fall and the robot is unable to
autonomously right the board.

During each trial the robot records the angular velocity and inclination of
the torso, as well as the positions of each joint. From these data we can calculate
the angular velocity and inclination of the bongo board’s deck.

Table 1 shows the angular velocity and inclination of the robot’s torso (θ, θ̇)
and of the deck (φ,φ̇) across all trials.

4.1 Comparison of Control Policies

Both the “do the shake” and “let’s sway” policies exhibited similar performance
regardless of the control algorithm used. The “do the shake” policy performed
best when used with the fuzzy logic controller, while the “let’s sway” policy
performed better with the PID controller. The differences in performance were
slight and are not statistically significant.

As observed by Baltes et al., the “let’s Sway” policy did successfully maintain
a lower average angular velocity in the robot’s torso [1]. The difference was very
small; the difference in average torso velocities 4.00597× 10−5 deg./s. The “let’s
sway” policy does not appear to offer any significant benefits to balancing, but
is not detrimental either.

The “do the shake” policy used with the fuzzy logic controller maintained
the lowest average deck inclination with the smallest standard deviation of all
experiments. Additionally, this combination of control algorithm and control
policy had the lowest recorded average φ̇. These findings are mirrored in the
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average torso inclination and angular velocity, indicating that the “do the shake”
policy may be preferable over the “let’s sway” policy.

4.2 Comparison of Control Algorithms

Both the fuzzy logic and PID controllers were successfully able to control the
motion of the bongo board and maintain a stable position for short periods
of time. Qualitatively the fuzzy logic controller appeared to maintain a stable
position for longer continuous periods of time, but was unable to automatically
recover; when using the PID controller if either end of the deck struck the ground
the robot would react very strongly, autonomously bouncing the deck back to a
horizontal position. The fuzzy logic controller did not exhibit this self-recovery
property.

The fuzzy logic controller’s inability to self-recover after the deck struck the
ground is primarily attributable to the fact that the rules are written with the
assumption that the system is relatively stable and φ and φ̇ are small. When
the deck strikes the ground the system undergoes extreme deceleration, some-
times exceeding 1g. This large change in velocity requires a correspondingly
large output, which is unaccounted for in the fuzzy rule-set. The PID controller
in contrast has no strict upper bound on the magnitude of its output; the large
deceleration due to the deck-strike is passed directly into the PID controller,
which in turn produces a very strong response as its output. The introduction
of additional rules to the fuzzy rule-set to specifically address the large changes
in velocity experienced during a deck-strike may allow the fuzzy logic controller
to self-recover in a similar fashion as the PID controller.

The fuzzy logic controller, when used with the “do the shake” policy main-
tained the lowest average deck inclination with the lowest standard deviation,
indicating that overall the fuzzy logic controller was slightly more stable than
the PID controller. This improvement is not statistically significant, but does
indicate that, like the cart-and-rod inverted pendulum, the bongo board can be
controlled by both PID control and fuzzy logic.

Fig. 6. A humanoid robot equipped with skis demonstrating alpine skiing. We use the
“do the shake” policy to control the robot’s pitch and roll while skiing. (Winnipeg Free
Press [16])
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5 Conclusions and Future Work

This research has shown that two well-known solutions to the inverted pendulum
problem – PID control and fuzzy logic – are both well-suited to the bongo board.
Furthermore we have shown that the introduction of a rhythmic oscillation to
the bongo board system, while not detrimental, has little benefit to the stability
of the bongo board.

This research has numerous possible applications to humanoid robotics.
Active balancing on unstable terrain will be an essential skill for humanoid robots
to be useful in arbitrary environments. Examples of such environments include
loose rubble, which may suddenly slip or give-way underfoot; ice or wet linoleum,
which offers minimal traction; and deep carpet or foam, which compresses under-
foot and provides uneven support.

Iverach-Brereton et al. demonstrated a simple shuffling gait for ice skat-
ing [14,15], but could not sustain a glide phase due in part to the difficulty in
balancing on a single skate blade. The use a PID or fuzzy logic controller to
control the robot’s lateral balance may allow the robot to balance for longer
periods on a single skate, allowing for a more sustained glide phase.

The bongo board is fundamentally, like balancing on a skate blade, is a largely
two-dimensional problem; the skate blade, like the bongo board, provides ade-
quate support for the robot to remain stable along the front-back axis. Balancing
along the left-right axis only requires control over movement in the frontal plane.
The wobble board – an apparatus consisting of a circular deck and a free-rolling,
spherical fulcrum below it – conversely requires control over translation and rota-
tion in the frontal, sagittal, and transversal planes due to the spherical motion
allowed by the fulcrum. Implementing a solution for the wobble board remains
part of our ongoing research.

We have recently begun research into alpine skiing using a humanoid robot,
shown in Fig. 6. Balancing on skis while going downhill requires control over
rotation and translation in the frontal and sagittal planes, but does not require
control over rotation in the transversal plane; the length of the skis prevents the
robot from twisting in an uncontrolled fashion. To ensure that the robot’s skis
remain in contact with the hill regardless of inclination while simultaneously
keeping the robot’s torso vertical we implemented a controller using the “do the
shake” policy to control the robot’s motions in the frontal and sagittal planes.
A video demonstrating this automatic correction for slope can be seen here:
https://youtu.be/XU17sbItYxI.

Our work on alpine skiing demonstrates that the bongo board solutions pre-
sented here are applicable to more practical problems of balancing on varied
terrain, as well as balancing in higher-dimensional problems than the more tra-
ditional bongo board.

https://youtu.be/XU17sbItYxI
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