Vision-based Multi-Agent SLAM for Humanoid Robots

Jonathan Bagot, John Anderson, Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada andersj,jacky@cs.umanitoba.ca

Simultaneous Localization and Mapping

- SLAM answers the following questions
 - Where am I? (Pose)
 - What and where are the others?
- Performance criteria
 - Localization and map must be good enough to allow navigatiion
- Localization and mapping are tightly coupled
- Main challenge for humanoid robotic soccer
- FIRA HuroCup Obstacle Run

Multi-Agent SLAM

- Increase accuracy of the map
- Increase coverage of the map
- Speed up creation of the map
- Humanoid robots provide additional challenges
 - Small processing speed
 - Small memory

Algorithm

- Track each agent's pose over time using particle filters
- Map landmarks relative to best particle using an occupancy grid
- Each agent communicates
 - its pose
 - all landmarks in its map
 - Its target position

Algorithm

- Select new target pose based on
 - Coverage
 - Distance

Homogeneous Agents

- Rogue and Storm
- Bioloid Robot Kit
- Nokia Mobile Phone

Environment

Wall obstacles

Gate obstacles

Particle Filters

- Most popular algorithm for SLAM
- Bayesian approach
- Allows modelling of arbitrary probability distribution through weighted particles
- Particles are moved through motion model
- Sensor model is used to update weight of particles
- Resampling of particles based on weight
- Best position estimate: Weighted average

Map Representation

- Occupancy grid with 25cm x 25cm cells
 - Recency (0..255) value to handle dynamic objects

Recency update

- The sensor senses an object
 - If an object exists within the map relative to the best particle, its recency is increased
 - Otherwise it is initialized to 128
- The sensor does not sense an object
 - If an object exists in the map relative to the best particle, the recency of the object is decreased

Map Representation

Obstacle model

Communication

- Bluetooth L2CAP layer
- Decentralized, asynchronous approach
- A robot can join or leave a team at any time
- Agent sends:
 - Its estimated pose
 - Landmarks in its map
 - Minimize size of messages

Map Merging

- Sequential deployment strategy
 - Origin of world frame is known
- If a landmark send by another robot
 - If the landmark already exists in our map, then use the maximum recency value
 - If the landmark does not already exist in our map
- Store pose of nearest agent to select targets

Target Selection

- Constraints on target pose
 - Must be on the frontier
 - Euclidean distance from the target pose to the nearest agent is greater than maximum sensor range

- Visualization using bluetooth communication
- Two agents use different colours
- Brightness indicates recency
- Arrows represent best particle

Conclusions

- Implementation of particle filters with
 - Motion model
 - Sensor model
- suitable for small embedded systems
- Decentralized, asynchronous communication model to support multi-agent SLAM
- Simple target selection method for frontier exploration