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ABSTRACT

A solution to the SLAM problem using multiple homoge-
neous humanoid robots with limited processing power, noisy
sensor data, and inconsistent locomotion is described and
implemented on two real humanoid robots. The solution
uses particle filters and the concept of frontier-based explo-
ration.

1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a crit-
ical problem to be solved in any autonomous robotics ap-
plication where the environment is even partly unknown.
A solution to the SLAM problem requires three answering
three basic questions [4]: “Where am I?”, “Where am I go-
ing?”, and “How do I get there?”. The solution of each of
these questions individually may be greatly simplified by
knowledge of the environment (e.g. known landmarks al-
low recognition of one’s location more easily). The fact
that this knowledge is lacking, along with the fact that these
problems must be tackled simultaneously, is what makes the
SLAM problem so difficult. In an unknown environment,
for example, a robot has no initial landmarks to use for lo-
calization, and must develop these as it explores. Similarly,
since mapping is done from the perspective of an agent’s
current pose (coordinates and orientation), the quality of a
map is only as good as the quality of an agent’s estimation
of its pose.

There are many approaches to SLAM in the literature
(See section 2). In our work, we are interested in a num-
ber of specific elements that complicate this problem signif-
icantly, beyond the general case:

• Vision: Our robots rely on vision from a single forward-
facing camera. Most applications dealing with the
SLAM problem rely on wide-range, high-resolution
laser scanners. Single-camera vision provides a large
amount of data that must be interpreted in real time,
but covers a correspondingly narrower area without
depth information. Moreover, the real-time element
of this problem means that only very basic interpreta-
tion of images can be performed, resulting in far more

noise than would be found in other SLAM-based ap-
proaches.

• Limited Computational Ability: the processors our
robots work with are mobile embedded systems of
limited processing power. Much of this limited power
must be devoted to interpreting visual frames, as well
as to the robot application at hand. This both leaves
little remaining computational ability to a SLAM al-
gorithm, and compounds the previous problem in that
there is a low frame rate for vision and greater noise
in visual interpretation.

• Humanoid Robots: most of the well-known approaches
to SLAM were created and demonstrated on wheeled
robots operating on flat surfaces. Humanoid robots,
on the other hand, have many more degrees of free-
dom (DOF) in their physical construction. This means
that even on a flat surface, a camera attached to a
robot will have much variation in its positioning (e.g.
as the robot bends to take a step), leading to much
greater noise and difficulty in interpreting a stream of
images. This makes the SLAM problem significantly
more challenging for humanoid robots using vision.

• Efficient Exploration: we wish to cover an unknown
domain efficiently; this means attempting to avoid re-
dundant area coverage.

A SLAM solution gradually builds a map by mapping
visible spatial area relative to the current estimated pose of
an agent. Therefore any odometry error during motion prop-
agates to landmark location in the map. The fact that we are
using humanoid robots also greatly increases odometry er-
ror, since there are no simple mechanisms such as wheel
encoders to provide reasonable dead reckoning during mo-
tion.

In addition to these factors, there are other elements that
also complicate the SLAM problem in the real world, as op-
posed to laboratory environments: the presence of obstacles
and other robots means that agents must be able to navigate
without colliding with obstacles while maintaining a good
estimate of their pose, and the fact that some obstacles are
mobile means that there will be greater noise that must be
overcome in order to create an accurate map.



The constraints of the SLAM problem, along with the
desire for efficient exploration and limited computational
abilities, point to the use of multiple agents in this problem.
Using more than one agent in a SLAM approach should be
able to increase the accuracy of a map through multiple per-
spectives and the ability to reduce one another’s odometry
error. In addition, if multiple agents can simultaneously se-
lect different unexplored targets and avoid exploration over-
lap, the amount of exploration that can be performed should
be able to be significantly increased, up to the limit where
physical interference prevents information gain [8].

The presence of multiple agents should also work to
counter limitations on individual robots. Assuming com-
munication is available, the amount of information that can
be obtained about the environment by multiple agents in
communication with one another should have a greater im-
pact on the SLAM problem than that of n agents operat-
ing individually, since each new landmark serves to make
future work in SLAM more accurate. Another significant
limitation is the battery power available on any one robot:
working with a single agent would mean that any signifi-
cant domain would be impossible to completely map. Other
forms of individual limitation can be similarly overcome:
Battery life may inhibit an agent from mapping a large en-
vironment, and some areas may be inaccessible due to a par-
ticular agent’s locomotion abilities. Multiple agents, possi-
bly heterogeneous, can increase the coverage percentage by
using each agent’s resources more effectively.

This paper presents a novel approach to Multi-Agent
SLAM. While others (most notably [3, 7]) have developed
approaches to multi-agent SLAM, we are moving beyond
the limitations of these works to add the complexity of work-
ing with humanoids, vision, and limited computation dis-
cussed in this section. The approach presented here is demon-
strated using homogeneous humanoid robots relying solely
on the vision capture capabilities and processing power of
cellular phones. In order to answer the “Where am I” ques-
tion, every agent tracks its pose over time with a particle
filter given only sensor feedback from a single forward fac-
ing camera on a cellular phone attached to the robot. Land-
marks are mapped relative to the best particle (estimated
agent pose) in an occupancy grid with a recency value asso-
ciated with each grid cell. Each agent communicates its es-
timated pose, all landmarks in its local map, and its current
target pose to other agents. All agents select target poses
such that each target pose satisfies a couple of simple con-
straints which help increase the coverage percentage of the
environment and reduce the time to cover the environment.

2. RELATED WORK

One major contribution to the inaccuracy of maps generated
by SLAM algorithms is the accumulation of odometry error
caused by dead reckoning. Rekleitis et. al. [7] used two or
more agents to reduce the accumulation of odometry error
caused by dead reckoning. Agents were modeled as points

which could move in any direction with two types of sen-
sors, an object detector which could sense objects nearby
and a robot tracker which could determine the distance and
orientation of another robot within line of sight. The envi-
ronment was modeled as a large polygon decomposed into
trapezoids which were then cut into stripes. Only one agent
moved at a time along a stripe of a trapezoid while all other
agents observed its movement. When the moving agent
stopped, its location was updated based on the observations
of other agents and its role was reversed to an observing
agent, allowing the next agent to move. If the moving agent
remained within line of sight of at least one other agent at
all times no dead reckoning was ever required, therefore this
approach reduced odometry error and increased map accu-
racy. In this work, we operate with only a single sensor, and
no restrictions on the movements of any agent.

One hurdle multiple agents must overcome to solve the
SLAM problem that a single agent is not faced with is map
merging. Birk and Carpin [2] merged maps from multiple
agents without knowledge of an agent’s pose relative to oth-
ers. The best merging is determined by maximizing overlap
between two maps. A search for the best merging requires
keeping one map fixed and continuously rotating and trans-
lating the other. Birk and Carpin used a random walk al-
gorithm guided by a heuristic which required a relatively
large amount of processing power. The search space for
the best merging is extremely large, therefore map merging
may have to be centralized when the poses of agents relative
to one another are unknown, unless mobile agents have the
resources necessary to perform many rotations and transla-
tions. Our work does not require the merging of occupancy
grids, but uses the exchange of landmarks to update maps
individually.

In order to take advantage of the distribution of mul-
tiple agents to reduce the time to cover the environment,
agents must somehow be directed to unexplored areas. Ya-
mauchi [9, 10] introduced the concept of a frontier (a region
bounding open and unexplored space) and frontier-based
exploration using multiple agents in a form of occupancy
grid. An occupancy grid associates a probability with each
grid cell representing the probability that cell is occupied. If
the stored probability is less than the prior probability, the
grid cell is open. Similarly, If the probability is equal to
or greater than the prior probability, the grid cell status is
unknown and occupied, respectively. In Yamauchi’s work,
agents had both a global and local occupancy grid. The local
occupancy grid of an agent was constructed and sent to all
other agents when its target frontier was reached. The global
occupancy grid of an agent was an integration of all agents
local occupancy grids. A decentralized, asynchronous ap-
proach allowed addition and removal of agents to the ex-
ploration team without consequence since information was
shared and control was independent. If agents were allowed
to navigate to the same frontier, the solution was not optimal
due to interference.

Anderson and Papanikolopoulos [1] improved on this
work, comparing Local Target Search and Shared Target



Search. For Local Target Search, agents shared local infor-
mation about open search areas only, while for Shared Tar-
get Search, agents had a shared map with a search strategy
that relied on a global list of unexplored areas and meth-
ods for preventing agents from selecting the same targets.
This comparison provides evidence that multi-agent search
with lightweight communication protocols can still improve
performance without explicit coordination.

Burgard et. al. [3] coordinated exploration such that
agents do not select the same frontier. Their approach used
occupancy grids and the concept of frontiers once again,
but made the assumption agents knew their relative posi-
tion. Target frontiers were selected for each agent with a
utility/cost metric. The utility was the expected visibility
range from the target frontier given the probability another
agent’s target frontier may have visual overlap. The cost
was the optimal path from the agent to the frontier. The al-
gorithm iteratively chose a target frontier for an agent and
reduced utility of nearby unexplored cells. Their experi-
mental results show that preventing the simultaneous selec-
tion of targets by agents reduce the time to cover the envi-
ronment with 2 real robots and 3 robots in simulation.

3. HOMOGENEOUS HUMANOID ROBOTS

Figure 1: Rogue and Storm.

The homogeneous robots used to conduct this research
(Figure 1) are humanoid robots with eighteen degrees of
freedom based on Robotis’s Bioloid kit. Each robot is equipped
with eighteen Dynamixel AX-12 servos (three in each arm,
five in each leg, and two in the torso) capable of producing
16.5kgf.cm of torque at 10V. One servo in the arm effects
motion in the sagittal plane, while the other two effect mo-
tion in the frontal plane. Three servos in the leg effect mo-
tion in the sagittal plane and the other two effect motion in
the frontal plane. Both servos in the torso effect motion in
the traverse plane.

An on-board Atmel AVR ATmega128 micro-controller
and Nokia 5500 cellular telephone are interfaced by a cus-
tom made infrared data association (IrDA) board containing

a Microchip MCP2150 standard protocol stack controller
supporting data terminal equipment (DTE) applications. The
on-board micro-controller is predominately used for com-
munication with the servos, including but not limited to
tasks such as position interpolation and load checking. It
is also used for the storage and playback of static motions
created by our motion editor software written by us. This
is all made possible by our custom firmware running on our
multi-threaded real time operating system (RTOS) Freeze-
rOS also written by us.

The Nokia 5500 provides a full C++ development envi-
ronment, robust operating system (SymbianOS 9.1 series 60
release 3.0), camera, communication mediums (Bluetooth
and IrDA), an ARM 9 235MHz processor, and a three axis
accelerometer (LIS302DL). The Nokia’s processor is used
for state generation, image processing, sensor data smooth-
ing, and application programs (including the SLAM approach
described here).

Everything except the Nokia 5500, which has it’s own
battery is powered by one lithium-ion polymer battery pack.
We have been custom-modifying these robots since April,
2007, and various versions have competed in the (FIRA)
2007 HuroCup in San Francisco, and RoboCup 2007 in At-
lanta. They will also be competing in the FIRA 2008 HuroCup
and RoboCup 2008.

4. ENVIRONMENT

Figure 2: Several Wall obstacles (dark) and a Gate obstacle
(upper right, light).

The environment in which we are exploring multi-agent
SLAM is composed of randomly-placed wall and gate ob-
stacles as shown in Figure 2. These are simply cardboard
folders, colored for recognition purposes. The purpose of
differentiating two types of obstacles is to allow the robots
to deal with them in physiologically-specific ways (e.g. mov-
ing around a wall, while crawling under a gate). This envi-
ronment is significantly more challenging for SLAM pur-
poses than many robotic applications (e.g. soccer), since
there is no knowledge of how many of each obstacle exists,



or any relationship in obstacle placement.

5. METHODOLOGY

Our SLAM approach, consists of the use of a particle filter
on individual robots to allow an estimation of their current
pose, a methodology for mapping, a methodology for ex-
changing and merging mapped information, and a method
for selecting frontiers to reduce redundant exploration. Each
of these are explained in the following subsections.

5.1. Particle Filter

The particle filter we employ is a variation on that used
by Rekleitis [6], differing in the motion model and parti-
cle weight update method. Each particle in the filter is a
weighted estimate of the agent’s pose. After an action (e.g.
a left, right, forward, or backward rotation or translation)
the pose estimate of each particle is updated based on the
motion model, then the weights are updated based on the
sensor feedback.

Any action by a robot will not necessarily produce the
same physical result. The motion model in a particle filter
estimates changes in orientation and position after an action
by modeling rotations and translations with some random
noise added. Rekleitis used wheeled robots, and a wheeled
robot cannot translate in a direction 90° from its current ori-
entation without first performing a rotation. A humanoid
robot does not have this restriction (e.g. it can perform a
side step). The motion model has been adapted to account
for such a translation.

Pose estimation with dead reckoning in our work is also
problematic compared to Rekleitis, due to significantly greater
odometry error present in humanoid robots and the fact that
we are using a single camera whose view is altered by the
DOF of the robot, rather than a fixed laser scanner. Af-
ter an action, the pose estimate of each particle is updated
based on the motion model. If there was no sensor feed-
back, the pose estimate of each particle would suffer from
this accumulation of odometry error. Our image processing
returns the polar coordinates of objects in the camera’s field
of view, but camera data during the humanoid robot’s loco-
motion is extremely noisy due to motion blur. Our weight
update method uses a certainty factor in the camera data and
a constant decay. The best particle is the weighted average
of all particles. The particle population size is 100, which is
manageable with our limited processing power, but success-
ful results [5] have been reported with a particle population
size of 50. Population depletion is handled with a simple
select with replacement re-sampling algorithm as used by
Rekleitis [6].

5.2. Map Representation

Every agent’s local map is stored as an occupancy grid with
25x25cm grid cells. A recency value [0, 255] is associated
with each grid cell instead of the more common posterior

Figure 3: Recency update method.

probability. If the recency value of a grid cell is greater than
zero, a landmark exists in the corresponding grid cell.

The recency value in occupancy grid cells is updated by
an increment or decrement depending on the current sensor
reading. If the sensor senses an object, and the coordinates
of the object relative to the best particle in the particle filter
map to a grid cell with a recency value greater than zero,
then the recency value is incremented; otherwise, the grid
cell recency value is initialized to 128. If the sensor does
not sense an object, landmarks are extended to circles with
radius r, if a line segment with length l (maximum sensor
range) extended from the best particle intersects a landmark
circle, the recency of the corresponding grid cell is decre-
mented( Figure 3).

The advantage of using recency values instead of poste-
rior probabilities is that floating point calculations are avoided,
which is desirable given our limited processing power. The
recency value can also be useful for handling erroneous sen-
sor readings or dynamic environments since the recency value
will eventually decrease to zero under these conditions.

5.3. Communication and Map Merging

A decentralized, asynchronous communication approach is
used between agents via Bluetooth over the logical link con-
trol and adaptation protocol (L2CAP) layer. No agent ever
waits or relies on information from other agents. An agent
uses only what information is available, therefore agents can
join or leave the SLAM team at any time without conse-
quence. This also means unreliable communication links
between agents are not a problem, beyond the lack of infor-
mation that results when communication goes down: each
agent can still operate independently. Each agent communi-
cates its estimated pose, all landmarks in its local map, and
its current target pose to other agents in messages encoded
such that the size of each message is as small as possible.

Because entire maps are not exchanged, there is no merg-
ing of occupancy grids. Instead, communicated landmarks
are integrated into the agent’s own map individually through
recency update. There are two important elements in this,
understanding the local coordinates of others, and actually
integrating this information.

To foster a global coordinate system, we adopt the se-
quential deployment technique of [1]. Agents enter the



environment one after another from the same pose, which
results in the same unique origin in a local coordinate sys-
tem for each agent. Thus, when describing the location of a
landmark, no rotation or translation information is required.
The weakness of this is the error in local pose estimation,
but that itself should be improved over time as SLAM un-
folds. Internally, each agent maintains the pose of the near-
est agent and their current target pose.

To integrate communicated landmarks, we use the re-
cency update method described previously, and assume agents
can trust one another (in the sense that there is no duplicity
in communication, and that each agent is running an ap-
proach such as this one to limit localization error). If the
landmark already exists in the agent’s map, the greater re-
cency value is selected and the corresponding grid cell is
updated. If the landmark does not exist in the agent’s map,
the corresponding grid cell is simply updated with the re-
ceived recency value.

5.4. Frontier Selection

Unlike [3], we use no centralized method for dealing with
frontier selection, and unlike [1], we do not maintain a shared
set of targets. Instead, we attempt to minimize coverage
overlap between agents without communication, by exploit-
ing the fact that each agent maintains an estimation of the
pose of the closest agent to it. As the SLAM approach de-
scribed in this section unfolds, agents select target poses
(desired coordinates and orientation for motion planning)
such that each must be a frontier on its local map, but in
addition, the Euclidean distance from the target pose to the
nearest agent must also be greater than the maximum sensor
range.

6. EXPERIMENTATION

To examine this approach, we compared using one and two
agents in a set of three environments with random wall and
gate obstacles such as that shown in Figure 2. The accuracy
of the map, coverage percentage of the environment, and
the time to cover the environment were recorded and com-
pared. The accuracy of the generated maps were compared
to hand constructed maps as shown in the left half of Fig-
ure 4, and ranked based on the following scoring method;
for each grid cell, if the grid cell in the generated and hand
constructed map were both occupied or both unoccupied by
a landmark, the score was incremented by one, otherwise it
was decremented by one. For a 16x16 grid with 25x25cm
grid cells the maximum and minimum scores are thus 256
and -256 respectively. The coverage percentage of the envi-
ronment was determined by examining the distinctive clus-
ters of landmarks in the generated map and their location
compared to the hand constructed map (the right half of
Figure 4). The time to cover the environment was recorded
where agents were allowed a maximum of 5 minutes to map
the environment or stopped if the coverage percentage was
equal to 100%.

Figure 4: Hand constructed maps (left) and associated clus-
ters (right) for three different environments.

Figure 5 illustrates snapshots of the maps in progress,
created by one- and two-agent teams (left and right respec-
tively) for the three environments. Yellow and purple mark-
ers differentiate the contribution of landmarks from each
agent, and as the recency of a landmark increases, its color
becomes brighter. Dark and light blue arrows represent the
best particle of each agent, and dark and light red spheres
represent agent targets. A video demonstration of this is
also available at http://aalab.cs.umanitoba.ca/
videos/MASlam.mpg.

7. DISCUSSION

In this paper an approach to multi-agent SLAM for humanoid
robots was presented, where each robot uses only a single
forward-facing camera. The concept of recency values for
occupancy grid cells was introduced as an alternative to pos-
terior probabilities. By using two simple constraints agents
were able to select target poses which helped increase the
coverage percentage of the environment and reduce the time
to cover the environment. The solution described was im-
plemented and demonstrated on two real humanoid robots.

The results in Table 1 show that the accuracy of the
maps do not vary appreciably by having a two-agent team.
This is in part an indication of just how challenging the
SLAM problem is in this environment: the approach used



Table 1: Results

Number of agents Map Accuracy score Coverage percentage Time to cover
1 1 248 33.33% 5:00min
1 2 238 14.29% 5:00min
1 3 243 50.00% 5:00min
2 1 240 50.00% 5:00min
2 2 226 42.86% 5:00min
2 3 239 50.00% 5:00min

Figure 5: Generated maps by one agent (left), and two
agents (right) for each of three environments.

here would be easily deployable in an environment like soc-
cer, where the recognition of one landmark (e.g. a goal)
greatly constrains the possible positions of the remainder.
While we are pleased with the coverage percentage increase,
the processing power limits the accuracy of perception and
therefore localization in a domain with unrelated landmarks,
and two robots is not enough to provide an increase in confi-
dence of values to show the power of this approach. Further
work will thus involve demonstrating this with additional
agents.

We also intend to combine data from the accelerometer
and a model of the robot’s walking gait to allow the inclu-
sion of distance traveled as an input to the particle filter,
which should greatly improve these results. this data will
also improve the estimation of the position of the camera as

well. Ultimately, we intend to operate with heterogeneous
agents without requiring a sequential deployment strategy.
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