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Abstract: Imitation learning enables a learner to improve its abilities by observing others. Most robotic imitation 

learning systems only learn from demonstrators that are similar physically and in terms of skill level. In order to 

employ imitation learning in a heterogeneous multi-agent environment, we must consider both differences in skill, 

and physical differences (physiology, size). This paper describes an approach to imitation learning from heterogeneous 

demonstrators, using global vision. It supports learning from physiologically different demonstrators (wheeled and 

legged, of various sizes), and self-adapts to demonstrators with varying levels of skill. The latter allows different parts 

of a task to be learned from different individuals (that is, worthwhile parts of a task can still be learned from a 

poorly-performing demonstrator). We assume the imitator has no initial knowledge of the observable effects of its 

own actions, and train a set of Hidden Markov Models to create an understanding of the imitator’s own abilities. We 

then use a combination of tracking sequences of primitives and predicting future primitives from existing 

combinations of primitives, using forward models to learn abstract behaviors from demonstrations. This approach is 

evaluated using a group of heterogeneous robots that have been previously used in RoboCup soccer competitions.  
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1.  Introduction 

Imitation learning is a powerful mechanism for 

improving the abilities of an intelligent agent  through 

observing demonstrations of behavior and producing 

functionally equivalent behavior using the agent’s own 

(possibly distinct) abilities. Evidence of learning from the 

demonstrations of others can be seen in primates, birds, 

and humans [1-3]. From an AI perspective, this is 

attractive because of its potential for dealing with the 

general problem of knowledge acquisition: instead of 

programming a robot for each individual task, robots 

should ultimately be able to gather information from 

human demonstrations [4-6], or from one another [4, 7, 

8] with the result that the robot’s performance at that 

task improves over time. Additionally, demonstrations do 

not have to be active teaching exercises: the imitator can 

simply observe a demonstrator with no communication 

necessary.  

To make imitation learning useful, an agent must 

first have an understanding of its own primitive motor 

skills (proprioception), observe demonstrations and their 

outcomes, and ultimately interpret these within the con-

text of its own primitives. In doing so, the agent develops 

new motor skills by creating hierarchical combinations of 

primitives [3], providing a deeper understanding of the 

imitated behavior. In the vast majority of real world 

settings, an agent will not exist in isolation with a single 

demonstrator over its lifetime: multiple demonstrations 

will likely be performed by different agents. Arguably this 

should be the case, since seeing the full range of ways in 

which a task could be accomplished is faster than the 

learner discovering these itself, and different agents will 

likely perform a task in different ways.  
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Robots have been developed for many different 

purposes, and as a result, in a multi-robot setting, any 

robot may encounter others that differ in many ways.  

These differences range from subtle differences in 

internal control code, to major differences in 

physiology — the robots’ physical components (sensors, 

effectors), their size, and the manner in which they 

function together. For similar reasons of generality, a 

robot learning by imitation should be exposed to tasks 

performed by this broad range of potential teammates.  

Humans naturally deal with heterogeneous 

demonstrators in imitative learning: if a child’s first 

exposure to the game of frisbee is through observing a 

dog catching a frisbee in its mouth, when the frisbee is 

thrown to the child they will likely attempt to catch it in 

their hand instead. Humans learn the task in terms of the 

skills that are natural and available to them, even if the 

demonstration displayed a different set of skills. In order 

to similarly increase the performance of a robotic 

imitation learner and allow it to learn from whatever 

demonstrators happen to be available in a multi-agent 

setting (ultimately, a mixture of humans and other 

robots), overcoming differences in physiology is 

absolutely essential [9]. Similarly, in working with a range 

of demonstrators, it will be unlikely that those 

demonstrators are all equally proficient at any task.  An 

agent must create abstractions to deal with physical 

differences, but it must also consider the fact that 

demonstrations may vary widely in quality (in part 

because of differences in experience, but also as a result 

of physical differences — some tasks will present greater 

challenges to wheeled vs. legged robots, for example).  

In this paper, we present a framework for imitation 

learning through global vision, which models multiple 

demonstrators by approximating the visual outcomes of 

their actions with those available to the imitator, with no 

prior knowledge of demonstrators’ abilities or physiology. 

This framework is able to learn from a range of 

heterogeneous demonstrators (different physiologies, 

modes of locomotion, sizes, and behavioral control 

systems), as well as a different range of domain-specific 

skills. Individually modelling its teachers enables the 

robot to approximate differences in physiology by actions 

suited to its own abilities, and to leverage the power of 

heterogeneous demonstrators to learn portions of a task 

from one demonstrator that are difficult to approximate 

from others. It similarly allows an agent to be selective in 

learning from those who demonstrate better skills in the 

domain at hand (yet still learn useful portions of a task 

even from agents that are not skilled).  

The experimental domain we use to ground this 

work is robotic soccer, a common domain in robotics 

because it presents most of the complex problems 

associated with intelligent mobile robotics, while 

remaining understandable to those outside the area. In 

our evaluation, an imitating robot learns to shoot the 

soccer ball into an open goal, from a range of 

demonstrators that differ in size and physiology 

(humanoid vs. wheeled), as well as in skill level. While 

this problem may seem trivial to a human adult, it is 

highly challenging to an individual that is learning about 

its own motion control. Manoeuvring behind a soccer 

ball and lining it up for a kick is a difficult task for an 

autonomous agent to perform, even without considering 

the ball’s destination — just as it would be for a young 

child. It is also a task where it is easy to conceptualize a 

broad range of skills (demonstrators that have good 

versus poor motor control, for example), and one where 

heterogeneity matters (that is, there are visual 

differences in how physiologically-distinct robots move).  

2.  Related Work  

A number of prior approaches to imitation learning 

have influenced this work. Demiris and Hayes [2] 

developed a computational model based on the 

phenomenon of body babbling, where babies practice 

movement through self-generated activity [10]. Demiris 

and Hayes [2] devised their system using forward models 

to predict the outcomes of the imitator’s behaviors, in 

Jeff Allen received his M.Sc. in Computer Science from the University of 

Manitoba in 2009. He has competed in international robotics competitions 

such as FIRA and RoboCup. In 2010 he was a research assistant at the Igarashi 

Design Interface Project in Tokyo, Japan (part of ERATO: Exploratory Research 

for Advanced Technology, a research program funded by Japan Science and 

Technology Agency). While working at the Igarashi Design Interface Project, 

he co-developed an interactive semi-autonomous robotic puppet interface as 

part of a human robot interaction project. He is currently Head of Research 

at Cogmation Robotics, where he works on robotic simulation software and a 

universal robotic control API. He also works with the University of Manitoba 

and Cogmation Robotics on joint robotic research projects. 

 

John Anderson is a Professor in the Department of Computer Science at the 

University of Manitoba. He received his Ph.D. from the University of 

Manitoba in 1995, in the area of artificial intelligence, and founded the 

Autonomous Agents Laboratory in the Department of Computer Science 

shortly afterward. His research interests lie in the areas of multi-agent 

systems and multi-robot systems, and include cooperative problem-solving, 

heterogeneous team formation, and social learning, and the application of 

these to challenging problems such as robotic soccer and urban search and 

rescue. He is also interested in improving Computer Science education 

through the use of artificial intelligence and robotics. 

 

Jacky Baltes received his Ph.D. in 1996 from the University of Calgary in 

Artificial Intelligence. From 1996 to 2002, he worked as a senior lecturer for 

the University of Auckland in Auckland, New Zealand. Since 2002, he is a 

professor in the department of computer science at the University of 

Manitoba in Winnipeg, Manitoba. Prof. Baltes' research interests are 

intelligent robotics, artificial intelligence, machine learning, and computer 

vision. Dr. Baltes and his students have competed successfully at various 

international intelligent robot competitions. Dr. Baltes is also a vice president 

of the FIRA robotic soccer association, chair of the HuroCup competition, and 

a member of the RoboCup executive committee. He is also interested in 

robotics education and a member of the steering committee of the 

International Robot Olympiad robot competition for high school students. 



Jeff Allen, John Anderson and Jacky Baltes 

www.ausmt.org  149      auSMT Vol. 2 No.2 (2012) 

Copyright ©  2012 International Journal of Automation and Smart Technology 

order to find the best match to an observed 

demonstrator’s behavior. A forward model takes as input 

the state of the environment and a control command 

that is to be applied. Demiris and Hayes [2] use one 

forward model for each behavior, which is then refined 

based on how accurately the forward model predicts the 

behavior’s outcome. By using many of these forward 

models, Demiris and Hayes construct a repertoire of 

behaviors with predictive capabilities. These were later 

extended [11], but used for essentially the same purpose. 

Similar forward models were used by Dearden and 

Demiris [12] to model the visual effects of actions, but 

these explored only a limited state space (one degree of 

freedom on a gripper) and were not used to deal with 

heterogeneity or to differentiate between demonstrators 

at all. In contrast to these prior works, the forward 

models in our framework model the repertoire of 

individual demonstrators performing a sophisticated task 

(instead of having an individual forward model for each 

behavior), and contain individual behaviors learned from 

specific demonstrators within them (the behaviors can 

still predict their effects on the environment, but these 

effects are not refined during execution). This provides 

the imitator with a model that can make predictions 

about what behaviors a specific demonstrator might use 

at a given time. Representing these separately also 

allows different (possibly complementary) behaviors to 

be learned from different demonstrators.  

Prior work in imitation learning has often used a 

series of demonstrations from demonstrators that are 

similar in skill level and physiologies [6, 13]. The 

approach presented in this paper is designed from the 

bottom up to learn from multiple demonstrators that 

vary physically, as well as in underlying control programs 

and skill levels.  

Some recent work in humanoid robots imitating 

humans has used many demonstrations, but not 

necessarily different demonstrators, and very few have 

modeled each demonstrator separately. Those that do 

employ different demonstrators, such as Calinon and 

Billard [13], often have demonstrators of similar skills 

and physiologies (in this work all humans performing 

simple drawing tasks) that also manipulate their 

environment using the same parts of their physiology as 

the imitator (in this case the imitator was a humanoid 

robot learning how to draw letters, the demonstrators 

and imitators used the same hands to draw). Inamura et 

al. [14, 15] use Hidden Markov Models in their mimesis 

architecture for imitation learning. They trained a 

humanoid robot to learn motions from human 

demonstrators, though they did not separately model or 

rank demonstrator skills relative to each other like we do 

in our work. They also only have humanoid 

demonstrators, unlike our work that focuses on multiple 

heterogeneous demonstrators.  

Nicolescu and Mataric [6] motivate the desire to 

have robots with the ability to generalize over multiple 

teaching experiences. They explain that the quality of a 

teacher’s demonstration and particularities of the 

environment can prevent the imitator from learning from 

a single trial. They also note that multiple trials help to 

identify important parts of a task, but point out that 

repeated observations of irrelevant steps can cause the 

imitator to learn undesirable behaviors. They do not 

implement any method of modelling individual 

demonstrators, or try to evaluate demonstrator skill 

levels as our work does.  

3.  Methodology  

The robots used in this work are shown in Figure 1. 

The robot imitator, a two-wheeled differential-drive 

robot (built from a Lego Mindstorms kit, and previously 

used by us in the RoboCup Small-Size league), is on the 

far left. One of the three robot types used for 

demonstrators is physically identical (i.e. homogeneous) 

to the imitator, in order to provide a baseline to compare 

how well the imitator learns from heterogeneous 

demonstrators. Two demonstrators that are 

heterogeneous along different dimensions are also 

employed. The first is a humanoid robot based on a 

Bioloid kit, using a cell phone for vision and processing 

[16]. The choice of a humanoid was made because it 

provides an extremely different physiology from the 

imitator in terms of how motions made by the robot 

appear visually. The third demonstrator type is a 

two-wheeled Citizen Eco-Be (version I, shown in close-up 

in Figure 2) robot, which is about 1/10 the size of the 

imitator. This was chosen because the large size 

difference and difficulty in moving a ball due to light 

weight makes for a different dimension of heterogeneity.  
 

 

 
Figure 1. Left: heterogeneous robots used in this work (and a pen to 

indicate scale). Right: visual markers in place to allow motion to be 

tracked by a global vision system. 
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Figure 2. Closer view of the Citizen Eco-Be Microrobot (v.1). 

 

The imitation learning robot observes one 

demonstrator at a time, with the demonstrated task 

being that of shooting a ball into an empty goal, similar 

to a penalty kick in soccer. This task should allow for 

enough variation between approaches for both different 

skill levels and different physiologies to have an impact. 

All knowledge of the task to be learned is gained by 

observing the demonstrators: no communication 

between the imitator and its demonstrators is allowed 

(or necessary).  

Any learning robot must begin with a set of simple 

motion primitives from which it can base more 

sophisticated behaviors. In our implementation we 

define five primitive actions reflective of the atomic 

motor commands available to the wheeled imitator: 

(forward, backward, left, right and stop). We assume no 

initial knowledge of an imitator’s own actions, and begin 

by having the imitator collect visual data of the outcomes 

of its own primitive actions using the Ergo vision system 

[17], to create its own model of what it can accomplish in 

the world. Once the robot has the ability to recognize the 

outcomes of its own action, primitive mimicry is possible. 

This must then be extended into abstractions to allow 

the robot to approximate outcomes for which it has no 

immediate explanation, and to deal with differences due 

to heterogeneity (physiology, size, skill) in 

demonstrations. We deal with these separately in the 

following subsections.  

3.1. Converting Demonstration Visual Streams into 

Sequences of Primitive Symbols  

Vision data from the execution of primitives is 

gathered as the imitator executes them in a random 

order, instead of gathering data from each primitive 

separately. This is done to ensure that the model of the 

imitator’s own actions is robust enough to deal with 

residual motion between primitives. The outcome of 

each primitive execution ends up occupying 25-30 visual 

frames (one second) of video, with each frame recording 

the x and y position and orientation (θ) of the robot. 

1000 visual sequences for each primitive type are 

randomly selected, for a total of 5000 training sequences. 

This data is then used to train a set of Hidden Markov 

Models (HMMs) [18], which can be used to match 

activity it views later to actions in the agent’s repertoire.  

We chose to use discrete HMMs as they are 

generally faster to train and use than continuous HMMs 

[14]. The observation sequences used to train the HMMs 

in our approach are the sequences of visual frames 

gathered from the imitator’s primitives. Discrete HMMs 

require a set of discrete symbols to represent all possible 

observation symbols of a sequence, so the visual frames 

need to be processed into a codebook of discrete 

symbols [19]. Each symbol in the codebook represents 

one of the possible categories to which distinct visual 

elements of the primitives’ visual outcomes can be 

classified.  

To convert the visual data of the primitives into 

discrete symbols, the vision data is clustered using the 

K-means algorithm [20]. The vectors used in the 

clustering algorithm are all three-dimensional, relating to 

the x, y, and θ (orientation) values of the robot. The 

clusters are calculated using all 5 of the primitive data 

sets (for a total of 5000 sequences, and approximately 

125,000 individual data points). To split the centroids we 

used the algorithm described by Linde et al. [21], and 

through experimentation discovered that 512 clusters 

was an optimal number of discrete observation symbols 

for the HMMs in our approach.  

In our approach to imitation learning, the data 

recorded in a demonstration (and observed during a trial 

of the imitator) are the x and y field coordinates of the 

demonstrator/imitator and the ball, as well as the orien-

tations of the demonstrator/imitator. This data is 

sufficient for the imitator to learn the chosen task from 

the collection of demonstrators. During each observed 

demonstration, the imitator uses its knowledge of the 

visual effects of its own actions (i.e. the mapping 

represented by HMMs) to convert the visual stream of a 

demonstration into a sequence of primitive symbols 

(Figure 3, top).  
 

 
Figure 3. Imitation Learning Architecture 
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In our implementation, the initial step in 

converting a demonstration to a sequence of primitives is 

to segment the demonstration. A demonstration is 

segmented so that each segment is an atomic piece of a 

demonstration, in that it can be described by a single 

imitator primitive. This is achieved by creating a segment 

whenever the demonstrator has moved (or turned) too 

far for any of the imitator’s primitives to possibly match 

the motion. We also used a minimum number of visual 

frames for segments, in order to give the HMMs 

performing the classification a reasonable amount of 

motion data to work with. The HMMs can try to classify a 

single frame as a primitive, though this is futile, as the 

motion data contained in one frame is so small that there 

is no way to differentiate between primitives. We use a 

minimum of 10 frames for each segment, which was 

determined during preliminary experimentation. We do 

not use a maximum value, as the segments are only cut 

off when the motion exceeds the amount of movement 

possible by any of the imitator’s primitives. We 

determine stop primitives using a similar process: if the 

minimum number of frames has already occurred, but 

the motion contained in them is very low (the position of 

the robot has changed less than 1 millimetre, and the 

orientation less than 20 degrees), the segment is 

classified as a stop primitive.  

If it is determined that a segment is not to be 

classified as a stop primitive, the segment is analyzed by 

the forward, backward, left, and right HMMs. The HMM 

that provides the highest probability of a match to the 

segment is chosen, and its primitive is used as the 

symbol to classify the segment. If two or more HMMs 

produce probabilities that are too close to each other 

(within 2%, a value obtained during experimentation) for 

a given segment, there is no clear frontrunner to classify 

that segment confidently. In this case no match is reliable, 

and the segment is instead classified as a gap. A gap in a 

demonstration represents a part of the demonstration 

where no primitives are capable of achieving the same 

state change as the segment, and so a higher level 

abstraction over individual primitives is needed to cover 

these gaps. For example, if a humanoid demonstrator 

performs a side-step, and a wheeled robot cannot 

achieve that same motion with any of its primitives, such 

a gap would occur. This is to be expected when using 

demonstrators that are heterogeneous.  

3.2. Behaviors and Forward Models  

To attempt to learn from portions of a 

demonstration where a match is poor or no match at all 

is possible, the imitator must construct a more mean-

ingful abstraction of the demonstration, using behaviors. 

This meaningful abstraction is similarly useful in 

overcoming differences in physiology and skill. An 

implementation-level description of behavior creation 

and maintenance requires an understanding of all 

elements of this approach, and so the equations involved 

are presented following an abstract description.  

Behaviors are learned by combining primitives to 

produce more complex actions based on observations [1, 

6, 22]. A method must be used to determine which 

behaviors and primitives are combined to form new be-

haviors, to avoid a combinatorial explosion of behaviors 

that are likely useless. Our implementation is designed to 

determine the frequency with which primitives and 

behaviors recognized from the demonstrations follow 

each other in sequence. When two behaviors or 

primitives are found to be occurring sequentially 

frequently enough, a new behavior is created to 

encompass them both. To determine which behaviors or 

primitives occur sequentially, behaviors predict state 

change by applying the average state change (with a 

small random variation) from each of their primitives in 

sequence (the primitive state changes are gathered from 

the same primitive motion data used to train the HMMs). 

All behaviors’ predictions about how they will affect the 

current state of the field are compared to the next state, 

and the behavior that has a prediction that best 

approximates the actual outcome of the demonstration 

is selected to occur next.  

If behavior A follows behavior B in sequence, it 

means that behavior A was chosen as the best prediction, 

and then behavior B was chosen as the best prediction 

afterwards. When a behavior follows another in 

sequence, the element in the frequency matrix 

representing the frequency of the two behaviors 

occurring in sequence is increased. In Figure 4, the L 

primitive has just been predicted to follow the L primitive, 

and so the frequency is updated (to 0.3 in the figure). If 

that frequency surpasses the behavior creation threshold 

of 0.3, a new behavior is created that encompasses both 

of the primitives.  
 
 

 
Figure 4. A left primitive is predicted to follow another left primitive, 

causing the frequency at row L and column L to be increased.  
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To keep track of how often behaviors follow each 

other in sequence, a matrix of behavior frequencies is 

maintained (the matrix labelled Frequencies in Figure 4). 

All behaviors have their own unique row and column in 

the frequency matrix. Each column in a given behavior’s 

row represents the frequency that a behavior will follow 

another. For example, in Figure 4, the L behavior has not 

followed the F behavior, and as a result the frequency at 

row F, column L is 0.  

Since behaviors can be created from other 

behaviors, the total number of behaviors needs to be 

kept under control. One of the ways this is done is to 

represent the behaviors as their component primitives. 

Instead of representing composite behaviors as links to 

other behaviors, which may in turn have links themselves, 

we represent all behaviors as the sequences of primitives 

that were used to create them, and copy primitives when 

behaviors are combined.  

To keep the number of behaviors learned 

reasonable, each behavior has a permanency attribute, 

which is used in conjunction with predictive forward 

models (described below). As the ongoing actions of a 

demonstrator are observed, the primitive or behavior 

deemed most likely to occur next is predicted, and 

confirmed through future observations (which may 

involve a long sequence of primitives to be matched in 

the case of complex behaviors). A behavior’s 

permanency is increased if the behavior is observed after 

being predicted (i.e. it is useful for modelling behavior), 

and slowly decays over time otherwise, to the point 

where the behavior is eventually deleted. If a behavior is 

created that already exists, a second copy is not made. 

Instead the existing behavior has its permanency 

increased, because it is useful enough to have been 

created more than once independently. If the behavior is 

predicted and then observed frequently enough, the 

decay rate will slow, and if the permanency attribute 

surpasses a threshold, the behavior will be marked 

undeletable.  

Forward models are designed to take in the current 

state of the environment, and make predictions about 

future states [2, 12]. In our work, behaviors are built and 

stored using forward models (Figure 3, bottom) which 

represent frequencies of primitives and behaviors 

occurring in sequence. It is the behaviors within the 

forward models in our implementation that are used to 

explain and predict the behavior of demonstrators in 

terms of the imitator’s repertoire. In our approach, each 

demonstrator that the imitator is exposed to is assigned 

a unique forward model. There is also a distinct forward 

model that represents the behaviors that the imitator 

itself has learned and acquired. The forward model 

representing the imitator is the final product of the 

entire imitation learning process in our approach, and 

once learning is complete, that forward model can be 

used to control an imitating robot to achieve the same 

tasks that it learned from the demonstrators. The 

forward model representing the imitator can learn its 

own behaviors like the demonstrator models, but it is 

also given frequently-used demonstrator behaviors to aid 

in its learning process. These additional demonstrator 

behaviors give the imitator a general model of all the 

useful activity obtained from the demonstrators. A 

demonstrator forward model learns the various 

behaviors exhibited by a specific demonstrator, and can 

be used to predict what that demonstrator might do in 

any given situation. Unlike other work with forward 

models in imitation learning, we use separate forward 

models for each demonstrator so that the relative skill 

levels of demonstrators can be modelled and compared, 

and differences in the manner that a task is performed 

due to physiology can be overcome.  

 

 
Figure 5. Predictions are compared incrementally down the 
demonstration’s primitive segments. Stage a) represents a match up to 

one segment past the current behavior, while stage b) represents a 

match (the dark box) up to two segments past the current behavior.  

 

The imitator should learn how to approximate the 

result of the demonstrations as efficiently as possible. 

We have designed the predictive process to ensure that 

all forward models attempt to span as many segments of 

the demonstration that they can with their available 

behaviors. As the predictions are made, some behaviors 

can make accurate predictions about segments that are 

further along the demonstration than others. For exam-

ple, if the demonstration contains a sequence of 

repeating forward primitives (forward, forward, forward, 

forward, forward, ...), and a forward model has a 

behavior that is composed of three forward primitives in 

sequence (forward, forward, forward), that behavior can 

make a prediction that matches the third segment. In our 

system, as long as the next segment has at least one 

prediction that matches, the position of the next 

segment is incremented and all the predictions are 

compared to this segment. In Figure 5 at stage a) all 

behaviors have generated predictions about how they 

will change the state of the first primitive (F). All of these 

predictions are compared to the next segment, in this 

case a stop primitive (the S). Since at least one of the 
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predictions is considered a match in stage a), all 

predictions are compared to the segment following, the 

second F in this example.  

In Figure 5 at stage b), at least one prediction was a 

match, and so the segment being compared moves down 

another primitive. This process continues as long as at 

least one of the behavior’s predictions matches the next 

segment. In the example given in Figure 5, no predictions 

match segments past those matched at stage b), and so 

stage b) is as far as the current round of predictions can 

reach in the demonstration. The primitives covered by 

the predictions in b) are shown outlined in gray. Once no 

more predictions can match the next segment, the 

maximum span that the forward model’s existing 

behaviors can approximate has been reached. All 

behaviors that had a prediction that matched that 

segment are then evaluated and one is selected as the 

next behavior. The furthest segment that was matched 

becomes the new current segment, and in the next 

round of predictions, the behaviors will predict their 

effects on this new current segment. The selected 

behavior has the frequency with which it follows the 

current behavior increased. The selected behavior 

becomes the current behavior, and in the next round of 

predictions it will update the frequency of whatever 

behavior follows it. If no predictions match even the very 

first segment compared, then the current behavior is set 

to whatever primitive is in the next segment, and the 

prediction process starts over as if the next segment was 

the beginning of a demonstration.  

The accuracy of a prediction is determined by how 

well the predicted position and rotation of the robot 

matches with the actual outcome (the next segment of 

the demonstration). Our implementation is designed to 

learn the shortest behaviors available to achieve desired 

environmental changes. To achieve this, the behavior 

with the smallest number of primitives is chosen from 

the accurately predicted behaviors. In the case of two or 

more behaviors tying for the fewest primitives, the 

behavior that has been in the forward model the longest 

(the oldest behavior) is taken as the best match. This is 

done to prevent newer behaviors from being preserved if 

an existing behavior achieves the same effects.  

In our approach, each unique forward model 

(created by the imitator for each individual demonstrator) 

begins with only the imitator’s primitives. The additional 

forward model for the imitator itself is used to model 

how the given task should be performed once imitation 

learning is complete. Training begins by viewing 

demonstrations for each demonstrator in turn, training 

only the forward model for that demonstrator:  

behaviors are proposed, promoted, and removed 

through decay as described above. Throughout the 

training of the demonstrator forward models, frequently 

occurring behaviors are passed on to the forward model 

representing the imitator, as suggestions for controlling 

the imitator’s own actions (Figure 6). Following this, each 

forward model representing a demonstrator is then used 

to process each demonstration from all demonstrators 

(Figure 7). This step allows behaviors in one 

demonstrator model that may not have been the most 

frequently used, to be further stimulated by the 

demonstrations of others and passed along to the 

imitator forward model. That is, a particular movement 

combination may be useful but not be the best approach 

for demonstrator X, but might improve on some part of 

the technique demonstrated by demonstrator Y. This 

allows demonstrator X to make a partial contribution 

even if the technique ultimately followed by the imitator 

more closely resembles that of Y (for example, because 

of physiology differences). Finally, the imitator does the 

processing of all demonstrations using the candidate 

behaviors added by the forward models for the 

demonstrators, allowing the imitator to keep some 

demonstrator behaviors and discard others, while also 

learning new behaviors of its own. 
 

 
Figure 6. Demonstrations from each demonstrator are used to train a 

forward model representing that demonstrator. Frequently occurring 
behaviors in each session are moved to the forward model representing 

the imitator as potential behaviors to use in its own activities.  

 

 
Figure 7. All demonstrations are passed to the demonstrator models to 

elicit any further candidate behavior nominations.  
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To model the relative skill levels of the 

demonstrators in our system, each of the demonstrator 

forward models maintain a demonstrator-specific 

learning rate: the learning preference (LP). A higher LP 

indicates that a demonstrator is more skilled than its 

peers, so behaviors should be learned from it at a faster 

rate. The LP is used as a weight when updating the 

frequency of two behaviors or primitives occurring in 

sequence. The LP of a demonstrator begins at the half 

way point between the minimum (0) and maximum (1) 

values.  

When updating the frequencies (freq) of 

sequentially occurring behaviors (Equation 1), a 

minimum increase in frequency (minFreq — 0.05 in our 

implementation) is preserved, to ensure that a forward 

model for a demonstrator that has an LP of 0 does not 

stagnate. The forward model for a given demonstrator 

would still update frequencies, albeit more slowly than if 

its LP were above 0. Equation 2 shows the decay step, 

which happens every time a prediction is made, and is 

how the permanency of all behaviors is slowly decreased. 

The decayRate is equal to 1 − LP and the decayStep is a 

constant (0.007 was used in our experiments). To 

overcome this constant decay, the permanency of a 

behavior is increased when it is successfully predicted. 

The increase in permanency is given in Equation 3, which 

shows that a correctly predicted behavior has its 

permanency increased by a constant permUpdate (0.09 

in our experiments).  

 

freq = freq + minFreq + minFreq × LP (1) 

 

perm = perm − decayRate × decayStep (2) 

 

perm = perm + permUpdate  (3) 

 

LP = LP ± lpShapeAmount  (4) 

 

The LP of a demonstrator is increased if one of its 

behaviors results in the demonstrator (ordered from 

highest LP increase to lowest): scoring a goal, moving the 

ball closer to the goal, or moving closer to the ball. The 

LP of a demonstrator is decreased if the opposite of 

these criteria results from one of the demonstrator’s 

behaviors. Equation 4 shows the update step, where 

lpShapeAmount is either a constant (0.001) if the LP is 

adjusted by the non-criteria factors, or plus or minus 

0.01 for a behavior that results in scoring a 

correct/incorrect goal, 0.005 for moving the ball closer to 

the goal, or 0.002 for moving the robot closer to the ball. 

These criteria are obviously domain-specific, and are 

used to shape the learning (a technique that has been 

shown to be effective in other domains [23]) in our 

system to speed up the imitator’s learning. Though this 

may seem like pure reinforcement learning, these criteria 

do not directly influence which behaviors are saved, and 

which behaviors are deleted. The criteria merely 

influence the LP of a demonstrator, affecting how much 

the imitator will learn from that particular demonstrator. 

Dependence on these criteria was minimized so that 

future work (such as learning the criteria from 

demonstrators) can remove them entirely.  

When the learning process is complete, the 

imitator is left with a final forward model that it can use 

as a basis for performing the tasks it has learned from 

the demonstrators.  

4.  Experimental Results  

To evaluate this approach in a heterogeneous 

setting, we employed the robots previously shown in 

Figure 1 to gather demonstrations. Each of the robots 

used in these experiments was controlled using its own 

behavior-based control system that was developed for 

robotic soccer competitions, and all would be considered 

expert demonstrations. The Bioloid and Lego Mindstorms 

robots were demonstrated on a 1020 x 810 cm field, 

while the Citizen was demonstrated on a 56 x 34.5 cm 

field (the small size of this robot made for significant 

battery power issues given the distances covered on the 

large size field). The ball used by the Bioloid and Lego 

Mindstorms robots was 10 centimetres in diameter, 

while a smaller (2.5 cm) ball was needed for the Citizen 

robot.  

We limited the positions to the two field 

configurations shown in Figure 8. In the configuration on 

the left, the demonstrator is positioned for a direct 

approach to the ball. As a more challenging scenario, we 

also used a more degenerate configuration (on the left, 

which puts the robot in a position to more easily score 

on its own goal while manoeuvring).  

 

 
Figure 8. Field configurations. The demonstrator is represented by a 

square with an orientation marker. The target goal is indicated by a 

black rectangle. 

 

The individual demonstrators were recorded by 

the Ergo global vision system [17] while they performed 

25 goal kicks for each of the two field configurations. The 

global vision system continually captures the x and y 

motion and orientation of the demonstrating robot and 

the ball. The demonstrations were filtered manually for 

simple vision problems such as when the vision server 
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was unable to track the robot, or when the robot broke 

down (falls/loses power). The individual demonstrations 

were considered complete when the ball or robot left the 

field. A demonstration could result in a goal on the 

opposing net (goal), a goal on the robot’s own net 

(wrong goal), or no goal at all.  

One learning trial consists of each forward model 

representing a given demonstrator training on the full set 

of kick demonstrations for that particular demonstrator, 

presented in random order. Once the forward models 

representing each demonstrator are trained, the forward 

model representing the imitator begins training. At this 

point all the forward models for the demonstrators have 

been trained for their own data, and have provided the 

forward model representing the imitator with candidate 

behaviors. The forward model for the imitator then 

processes all the demonstrations for each of the two 

field configurations (a total of 150 attempted goal kicks) 

in random order. All of the forward models for each 

demonstrator predict and update their models at this 

time, one step ahead of the forward model for the 

imitator. (This is done to allow each forward model a 

chance to nominate additional candidate behaviors 

relevant to the current demonstration instance, to the 

forward model for the imitator.) 

The total number of goals and wrong goals each 

demonstrator scored during all 50 of their individual 

demonstrations is given in Table 1. 
 
Table 1. Demonstrator performance, Goals and Wrong Goals. 

Demonstrator  Goals Scored  Wrong Goals Scored  

RC2004  27  4  

Citizen  15  3  

Bioloid  12  1  
 

To determine if the order in which an imitator is 

exposed to the various demonstrators had any impact on 

its learning, we ordered demonstrators in two ways. The 

first is in order of homogeneity to the imitator. In this 

ordering, the MindStorms robot demonstrator (labelled 

RC2004 here because its expert-level control code was 

from our small-sized team at RoboCup-2004) is first, then 

the Citizen demonstrator (which is much smaller than the 

imitator, but still a differential-drive robot), and finally 

the Bioloid demonstrator. The shorthand we have 

adopted for this ordering is RCB. The second ordering is 

the reverse of the first, that is, in order of greatest 

heterogeneity to the imitator. The second ordering is 

thus Bioloid, Citizen, RC2004, or BCR for short.  

For each of the two orderings, we ran 100 trials. 

The results of the forward model training processes using 

the RCB and BCR demonstrator orderings are presented 

here. All the following data has been averaged over 100 

trials. 

Figures 9 and 10 show results for the number of 

behaviors created and deleted for each of the forward 

models representing the given demonstrators, with the 

two orderings for comparison purposes and standard 

deviations given above each bar. It can be seen that the 

RCB and BCR demonstration orderings do not affect the 

number of behaviors created or deleted from any of the 

forward models. The forward models representing the 

Bioloid demonstrator can be seen to create many more 

behaviors than the other forward models (and have a 

higher standard deviation), but they also end up deleting 

many more than the others. The vast difference in 

physiology from the other two-wheeled robots cause the 

forward models representing the humanoid to build 

many behaviors in an attempt to match the visual 

outcome of the Bioloid’s demonstrations. When trying to 

use those behaviors to predict the outcome of the other 

two-wheeled robot demonstrators, they do not match 

frequently enough (i.e. they are not a useful basis for 

imitation), and are eventually deleted as a result. 

 

 
Figure 9. The number of behaviors created, comparing RCB and BCR 

demonstrator orderings. Corresponding standard deviations are given 
at the top of each bar.  

 

 
Figure 10. The number of behaviors deleted, comparing RCB and BCR 

demonstrator orderings. Corresponding standard deviations are given 
at the top of each bar.  
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Figure 11. The number of permanent behaviors in each forward model, 

comparing RCB and BCR demonstrator orderings. Corresponding 
standard deviations are given at the top of each bar.  

 

In Figure 11, the number of permanent behaviors 

for each of the forward models are shown along with 

standard deviations above each bar, grouped by RCB and 

BCR to see any effect on demonstrator orderings. It can 

be seen that the orderings do not affect the number of 

behaviors made permanent to any of the forward models, 

indicating that ordering does not affect the number of 

useful behaviors acquired by the forward models 

representing the demonstrators, or the imitator itself. 

Even though the Bioloid has a very different physiology, 

the forward models representing its actions still learn a 

relatively similar number of behaviors as the other two 

forward models for the other demonstrators. The 

forward models representing the imitator have fewer 

permanent behaviors, partly because the forward model 

for an imitator filters the candidate behaviors given to it 

by the forward models representing the demonstrators, 

but it could also be due to the fact that the imitator is 

only exposed to each set of demonstrations once, while 

the other forward models see all demonstrations once, 

but the demonstrations for their particular demonstrator 

twice. 

To evaluate the performance of the imitators 

trained using this approach, we selected two imitators 

from the learning trials evaluated in this section at 

random (one from the RCB training order, and one from 

the BCR order). We used the forward models to control 

the Lego Mindstorms robots and recorded them in 

exactly the same way that we recorded the 

demonstrators, for 25 shots on goal in each of the two 

field configurations (Figure 8) for a total of 50 trials. Table 

2 shows the results of these penalty kick attempts by the 

two imitators trained using our framework. We believe 

the poor performance is related to the rough statistics 

used when a forward model is controlling the imitator. 

The LP shaping criteria are used during the control 

process for selecting a behavior to execute. The statistical 

methods used to calculate preconditions were not robust 

enough given the task at hand, and had small sample 

sizes to work with. This resulted in the criteria of the 

robot driving closer to the ball overriding the other LP 

criteria in most cases. This could be avoided if future 

work explored methods of gathering more precondition 

statistics, possibly in simulation for initial training, and 

then moving to physical robots later. 
 

Table 2. Goals and wrong goals scored by imitators trained with 

different demonstrator orderings. 

Demonstrator 
Ordering  

Goals 
Scored  

Wrong Goals 
Scored 

RCB  11  9 

BCR  7  13 
 

Table 3. The number of goals and wrong goals scored for each 
demonstrator.  

Demonstrator  
Goals 
Scored  

Wrong Goals 
Scored  

PoorDemonstrator  13  23  

AverageDemonstrator  11  9  

ExpertDemonstrator  27  4  
 

We also examined the ability of this approach to 

train an imitator through the observation of 

demonstrators of varying skill but identical physiology. 

The physiology chosen was the differential-drive 

MindStorms robot. Three demonstrators were employed. 

The ExpertDemonstrator runs international 

competition-level code previously used at RoboCup, 

while the PoorDemonstrator simply turns until it has a 

minimum angle threshold to the ball and then moves on 

that heading. Since it will normally take more than one 

bump with the robot to get the ball to the goal, the latter 

approach will cause significant wandering over the field 

and a greater likelihood of scoring on its own net even 

from the favourable configuration. Finally, there is also 

an AverageDemonstrator, chosen randomly from the 

imitators trained in the heterogeneity experiments 

described above. This was done because their 

performance fell between the two extremes of the other 

demonstrators, and to illustrate the potential for 

generational learning using this approach. The actual 

performance of these demonstrators (in terms of the 

number of goals and wrong goals scored by each) is 

shown in Table 3. To avoid any influence of demonstrator 

ordering on these experiments, during the phase where 

the forward models representing the demonstrators are 

trained, each demonstration is chosen randomly. 

Figures 12 and 13 show the number of behaviors 

created and deleted for the various forward models. The 

forward models for the ExpertDemonstrator have fewer 

behaviors created than the others, though they also have 

far fewer of them deleted. This indicates that the 

behaviors learned by the forward models for the 
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ExpertDemonstrator are more useful than those learned 

by the other models. There is not a large difference 

between the models representing the PoorDemonstrator 

or AverageDemonstrator. We believe this is due to the 

control system of the imitator (the AverageDemonstrator) 

relying too heavily on the LP criteria of its behaviors, 

which cause it to favour driving toward the ball. As 

mentioned previously, a larger set of training data would 

aid in proper pruning of behaviors based on 

preconditions.  

Figure 14 shows that the forward models for the 

ExpertDemonstrator retain (i.e. make permanent) more 

of the behaviors they create than the other forward 

models. This validates our approach to behavior 

permanencies that decay over time. The less skilled 

demonstrators have lower LPs, and therefore higher 

decay rates. Since the forward models representing the 

ExpertDemonstrator have a higher LP than the others 

(shown in Figures 15:17), the forward models learn 

behaviors more quickly, and have their behaviors decay 

more slowly. The number of behaviors retained by each 

model is thus strongly related to the LP, which was our 

intention when employing demonstrator specific learning 

rates. These results show that our imitation learning 

architecture adaptively weights its learning toward 

demonstrators that are highly skilled. At the same time, 

our approach still allows less-preferred demonstrators to 

supply behaviors that support portions of behavior that 

preferred demonstrators cannot (for reasons of 

physiology difference, for example).
 

 
Figure 12. Number of behaviors created. Corresponding standard deviations are given at the top of each bar.  
 

 
Figure 13. Number of behaviors deleted. Corresponding standard deviations are given at the top of each bar.  
 

 
Figure 14. Number of permanent behaviors. Corresponding standard deviations are given at the top of each bar.  
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Figure 15. The change in LP over time for the PoorDemonstrator.  

 
 

 
Figure 16. The change in LP over time for the AverageDemonstrator.  
 

 

 
Figure 17. The change in LP over time for the ExpertDemonstrator.
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The PoorDemonstrator in these trials is recognized 

as poorly skilled by the imitation learning architecture 

fairly quickly, as the forward models representing it have 

their LP decrease below the average LP value (0.5), and 

then fluctuate around 0.3. The trend is downwards for 

most of the PoorDemonstrator’s LP over time, but trends 

slightly upward as training progresses. We believe that 

the few behaviors the PoorDemonstrator acquires later 

in the training phase aid in generating predictions that 

match the demonstration, which in turn increases the LP 

of the PoorDemonstrator. 

To evaluate the performance of the imitators 

trained using this approach, we selected an imitator from 

these trials at random. We used the forward model to 

control the Lego Mindstorms robot and recorded it in 

exactly the same way that we recorded the 

demonstrators, for 25 shots on goal in each of the two 

field configurations (Figure 8) for a total of 50 trials. Table 

4 shows the results of these penalty kick attempts by the 

imitator trained from demonstrators of varying skill. 

Though somewhat disappointing in an absolute sense, 

the performance of a robot using the imitator as a 

control program still showed that the imitator can learn 

behaviors from demonstrators and perform the same 

tasks as the demonstrators. Moreover, this imitator 

achieves roughly the same results as that trained only 

with expert demonstrators in the previous experiment, 

despite having average and poor demonstrators working 

with it. 

 
Table 4. Goals and wrong goals scored by an imitator trained by 

demonstrators of varying skill levels. 

Imitator Goals Scored  
Wrong Goals 
Scored  

VaryingSkillTrained 11  13  

 

5.  Discussion  

We have presented the results and analysis of the 

experiments used to evaluate our approach to 

developing an imitation learning architecture that can 

learn from multiple demonstrators of varying 

physiologies and skill levels. The complete set of 

experiments and all results are found in [24]. The results 

for the performance of our forward models when used as 

control systems did not perform as well as the expert 

demonstrators, but they still were able to control the 

imitator adequately. The main focus on our research was 

in developing an imitation learning architecture that 

could learn from multiple demonstrators of varying 

physiologies and skill levels. The results in Section 4 

indicate that the learning architecture we have devised is 

capable of properly modeling relative demonstrator skill 

levels and can learn from physiologically distinct 

demonstrators.  

The demonstrators in the varying skill experiments 

were ranked appropriately by the imitator: the expert 

had the highest LP and the poor demonstrator had the 

lowest. More importantly, the imitator trained in the 

varying skill experiment was as skilled as the imitator 

trained in the varying physiologies experiment where all 

demonstrators were highly skilled. This shows that our 

learning architecture can learn as well when the 

demonstrators are skilled as when some of the 

demonstrators are quite poor. A stronger focus on the 

refinement of behavior preconditions and control 

(possibly through simulation) similar to the work of 

Demiris and Hayes [2] would likely make our system even 

more robust. 

Because our focus in this work was on 

heterogeneity in imitation, we concentrated on 

developing a complete imitation learning architecture 

that could be deployed on robots, as opposed to dealing 

with the many other robotics problems that must be 

taken into account for robots to operate in the real world.  

One assumption in this work was the accuracy provided 

by global vision, and future work will involve applying the 

architecture presented in this paper to a local vision 

setting (i.e., individual cameras on each robot). Moving 

to local vision makes this problem more challenging in a 

number of ways. First, since global vision provides a 

common global perspective, the real world coordinates 

of all objects are known.  When using local vision, all 

coordinates are relative to the viewer, and understanding 

visual information is thus dependent on an accurate 

localization of the imitator.  The differences in 

physiology that are a cornerstone of this work will also 

make the use of local vision significantly more 

challenging.  On a humanoid robot, for example, there 

is significant side-to-side motion when walking that is not 

normally present on a wheeled robot, and a locally 

mounted camera would thus show continual shifting in 

its view of the world.  Unless the imitator compensates 

for these effects, as humans do when moving, perception 

will be significantly noisier.  
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