
A Portrait Drawing Robot Using a Geometric Graph Approach:
Furthest Neighbour Theta-Graphs

Meng Cheng Lau, Jacky Baltes, John Anderson and Stephane Durocher

Abstract— We examine the problem of estimating ideal edges
joining points in a pixel reduction image for an existing point-
to-point portrait drawing humanoid robot, Betty. To solve t his
line drawing problem we present a modified Theta-graph, called
Furthest Neighbour Theta-graph, which we show is computable
in O(n(log n)/θ) time, where θ is a fixed angle in the graph’s
definition. Our results show that the number of edges in the
resulting drawing is significantly reduced without degrading
the detail of the final output image.

I. I NTRODUCTION

Recent research on humanoid robots has devoted significant
effort on developing humanoid robots that can match human
behaviour on high-level tasks that require integration of sens-
ing, physical motion and intelligence. Current developments
have diverse applications in a wide range of industries, in-
cluding education, health care, household services, military,
entertainment, etc.

A portrait drawing robot requires human-specific skills which
are challenging tasks for humanoid robotics. Recent results in
the robotics literature include painting robots where various
type of systems were implemented [1], [2], [4]. For instance,
Gommel et al. [1] implemented an industrial robotic arm,
KUKA, to draw in Cartesian space. Lu et al. [2] developed
a special purpose robotic arm platform, IRAS, for replicating
and creating works of art. However, neither of these robotic
systems mimics human-like features successfully. Therefore,
in recent years many researchers (e.g., [3], [4], [5], [6],
[7], [8]) have tried to develop a robust humanoid robot that
could produce pen-and-ink sketches of portraits. This usually
requires a tremendous amount of time to complete a task due
to complicated motion control and complexity of the input
image.

We are working on a portrait drawing humanoid robot,
Betty; see Fig. 1. We implemented OpenCV, an open source
computer vision library, to perform face recognition and
Canny edge detection that computes a line-art portrait that
can be mapped to the kinematics of the arm. Currently, Betty
draws the portrait using a point-to-point drawing mechanism
which maps the points from a pixel-reduction image that
consists of a set of points,P , as shown in Fig. 2. This article
aims to develop a human portrait drawing system that enables

M. C. Lau is sponsored by Universiti Kebangsaan Malaysia.
mengcheng.lau@gmail.com

J. Baltes, J. Anderson and S. Durocher are with
the Department of Computer Science, University of
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
jacky@cs.umanitoba.ca, andersj@cs.umanitoba.ca,
durocher@cs.umanitoba.ca

Betty to autonomously draw the portrait by implementing
a modified Theta-graph, called Furthest Neighbour Theta-
graph, to construct a good approximation of the input image
by defining edges joining pairs of points inP .

Fig. 1. Betty - the humanoid robot artist

Section II discusses related results on theta-graphs and Yao-
graphs. In Sections III and IV, Furthest Neighbour Theta-
graph are defined and their implementation is described. Fi-
nally, in Sections V and VI, the results of the implementation
and possible future research directions are discussed.

Fig. 2. Left: Line-art Portrait from Canny edge detection algorithm.Middle:
Pixel-reduction to reduce the number of pixels.Right: Actual drawing
produce by Betty

II. BACKGROUND AND RELATED WORK

A geometric graph is a weighted graph whose vertex set is
a set of points,P , in d-dimensional Euclidean space,Rd,
and the edges of the graph consist of line segments, each
of which joins two vertices. The weight of any edge is the
Euclidean distance,L2, between its endpoints [9]. Geometric
graphs are used to model many practical problems in various
fields of computer science and computational geometry.

Theta-graphs [10], [11] and Yao-graphs [12] are popular
geometric graphs that appear in the context of navigating



graphs [9]. Theta-graphs and Yao-graphs differ in the way
the nearest neighbour is defined. In both graphs, every vertex
is joined by an edge to each of its nearest neighbours in each
cone. In 2D Euclidean space, each cone forms an angle of
Θk = 2π/k, for some fixedk > 0. For Yao-graphs (Yk-
graphs), the nearest neighbour ofp in the coneC is simply
a vertexq 6= p in C minimizing the Euclidean distance (L2-
distance) betweenp andq. For theta-graphs (Θk-graphs), the
nearest neighbour ofp is the vertexq 6= p whose orthogonal
projection onto the bisector ofC minimizes theL2-distance
to p [9].

Bose et al. introduced a new variant of theta-graph called
ordered-Θ-graphs, which are built incrementally by inserting
the vertices one by one so that the resulting graph depends
on the insertion order [13]. They show that specific insertion
orders can produce graphs with desirable properties, includ-
ing low spanning ratio, logarithmic maximum degree and
logarithmic diameter. Bonichon et al. introduced a specific
subgraph of theΘ6-graph defined inR2, called half-Θ6-
graph, which consist of the even-cone edges of theΘ6-
graph [9]. They show that these graphs are exactly the TD-
Delaunay graphs, and are strongly connected to the geodesic
embeddings of orthogonal surfaces of coplanar points in 3D
Euclidean space.

In this article, we are interested in estimating the ideal edges
joining points in the set of points of a pixel reduction image.
Therefore we propose a geometric graph called Furthest
Neighbour Theta-graphs which are adapted from Theta-
graphs [10], [11], [14] and ordered-Θ-graphs [13] which we
discuss in Section III. The edges of a Theta-graph are defined
by the nearest neighbours of each vertex, which often results
in an unrealistic outline for the portrait with high number
of discontinued outline edges. Due to a large amount of
short edges drawn, a Theta-graph increases the complexity
of the portrait outline and its drawing time. In contrast to
Theta-graphs, a Furthest Neighbour Theta-graphs produces
an appropriate outline for the portrait by connecting its
furthest neighbours with reduced edges and low discontinued
outline edges as seen in Fig. 8.

III. F URTHEST NEIGHBOUR THETA-GRAPHS

In this section, the formal definition of Furthest Neighbour
Theta-graphs (Θ-graphs) is given and some of its basic
properties are established. LetP be a set ofn points in
the plane and letθ be an angle such thatkθ = 2π/θ
is a positive integer. For each pointp ∈ P , partition the
corresponding discD, with radiusr into a set ofkθ cones
C, each spanning an angle ofθ with apex atp; see Fig. 3.
Then, add an edge joiningp to the vertex in each cone of
C whose projection onto the clockwise cone boundary is the
furthestL2-distance fromp. Therefore, for any point setP ,
the Furthest Neighbour Theta-graphG = (P,E) of P has at
mostkθn edges ofE in discD.

Fig. 3. Comparison between the theta-graph and a Furthest NeighbourΘ8-
graphs withkθ = 8. Left: Illustration of notations forΘ8-graphs where the
edges are defined by nearest neighbours ofp, Right:An example of Furthest
NeighbourΘ8-graphs atp, wherea is the furthest neighbour ofp compared
to b, andc is not bounded by discD

Fig. 4. Finding the furthest neighbourq of p on discD with the furthest
L2-distancel in the firstkθ-cone

Using an algorithm analogous to that described by Bose et
al. [13] for constructing orderedΘ-graphs, for any setP of n
points inR2 and any point in discD, the Furthest Neighbour
Theta-graphG can be computed inO(n(log n)/θ) time. The
construction algorithm for Furthest Neighbour Theta-graphs
requires finding the furthest neighbours of each pointp ∈ P
bounded by akθ-cone disc with apex atp. We can usekθ
range trees [15] for each cone. In each tree, every pointq of
P is stored using a coordinate transformation to(x, y), where
x andy correspond to the respective distances between the
projections ofp and q on the boundaries of the given cone
with apex atp. See Figs. 3 and 4.

Each vertex requires adding at mostkθ edges, each of
which is determined using one range search. Thus, the graph
can be constructed using a series ofkθn searches in range
trees. Each range tree requiresO(n log n) space and supports
construction inO(n log n) time [16], with O(log n) update
time [17]. Using this implementation of range trees, the
above algorithm computes a Furthest Neighbour Theta-graph
in O(n(log n)/θ) time.

IV. I MPLEMENTATION

In this article, a practical implementation of furthest neigh-
bour theta graphs is proposed to solve the current portrait
sketching problem of our humanoid robot. However the



implementation is not limited to a graph algorithm, but it also
includes several image processing algorithms with OpenCV
such as thresholding, Canny edge detection [18] and edge
thinning. The development took place on a Linux platform
with Qt Creator and OpenCV library. Qt Creator is a cross-
platform integrated development environment (IDE) which
supports C++ for Qt program development. Fig. 5 shows
the flowchart of the general implementation to generate a
sketch-like portrait.

Fig. 5. Overview of the general implementation flowchart

The first step of the implementation is colour conver-
sion from a four-channel RGBA image to a single-channel
grayscale image. Next, it generates a binary image from the
grayscale image by applying a fixed-level thresholding to
remove noise in the output image where pixels with value
beyond the threshold are filtered. After thresholding, a Canny
edge detector is applied. In this case, it produces a full
size image as the input image, but with only black (0) and
white (255) pixels, known as single-channel boolean image.
The algorithm processes each individual edge candidate pixel
into intensity gradients by applying an hysteresis threshold
to the pixels, where the higher values are more likely to
correspond to edges compared to smaller values. Therefore
two thresholds parameters are required: upper and lower
thresholds. If a pixel has a gradient higher than the upper
threshold, then it is accepted as an edge pixel; if a pixel is less
then the lower threshold, it is rejected. If the pixel’s gradient
is between the thresholds, then it will be accepted only if it
is connected to a pixel that is above the high threshold [19].

The next step is to invert the black (0) and white (255) pixels
from the output edges by applying bitwise XOR operation on
the image array with thecvXorS() function. The bitwise XOR
is computed with the constant scalar value [19]. In order
to reduce the number of pixels to a reasonable number, an
image thinning algorithm is deployed with a 3x3 convolution
kernel anchored at the middle of the kernel. The function
cvFilter2D() applies arbitrary linear filter to the image and
then interpolates outlier pixel values from the nearest pixels.
Its thinning output is illustrated in Fig. 7.

In the final step, the line sketch of a portrait is generated
with the furthest neighbour theta-graph algorithm. However,
to reduce the number of less significant edges in our image,
a dual-disc approach is implemented as illustrated in Fig.
6. Fig. 6 (Left) shows that the initial single-disc approach
produces output noise if the neighbours are too close to
p, which will affect the presentation of the portrait outline.

Consequently, Fig. 6 (Right) illustrates a proposed dual-disc
approach to solve the problem by only considering the points
which fall between the inner and outer discs’ boundaries. The
results are discussed in Section V.

Fig. 6. Implementation of the furthest neighbour theta-graph. Left: The
initial proposed single-disc approach.Right: A dual-disc approach to reduce
the number of less significant edges.

The algorithm for finding the edges ofE at any point ofP
could be implemented as follows:

1. Read dark pixels into a sorted list
2. For each dark pixelp

a. SuperimposeD1 andD2 centred atp
b. For each cone inkθ cones

Search and update the furthest neighbour
within D1 andD2

c. Add an edgee to p
3. For each edgee

Remove overlap edges ifep,q = eq,p wherep
andq denote the end points of the edge

4. Draw edges

Fig. 7 shows the implementation of the interactive GUI
which computes the furthest neighbour theta-graph to the
input portrait. By modifying the parameters of various prop-
erties on the graph (e.g, discs’ radii and number of cones) a
sketch output with fewer edges could be generated.

V. RESULTS AND DISCUSSION

Fig. 8 shows the output of several output sketches generated
by different parameters configuration of the furthest neigh-
bour theta-graph. It is clear that the accuracy of its estimated
edges is greatly affected by the bounded perimeter of the
discs which could be too fine (too many insignificant edges)
or too coarse (loss of detail, such as the eyeglasses frame in
Fig. 8) to correctly represent the portrait.

The output results are evaluated based on the number of
edges produced by the algorithm. Table I shows the output
results by varying the radii of the inner and outer discs
as well as their respective total number of edges based on
various numbers of cones,kθ. Theses results were obtained
from an input image with a 25:100 Canny’s thresholds ratio,
resulting in 5450 pixels before thinning and 1607 pixels after



Fig. 7. Screenshot of GUI.A: Open an image.B: Canny edge detector thresholds.C: Furthest neighbour theta-graph properties.D: Output log for
processing results.E: Input image.F: Edge detection by Canny algorithm.G: Thinning image after morphological operation.H: Output of furthest
neighbour theta-graph

Fig. 8. Different output sketches based of discs’ radii ratio rinner :router.
Left: 0:10, middle: 9:10 andright 14:15 with four cones,kθ = 4

thinning. This suggests that the number of edges could be
reduced according to the inner and outer radii ratio, where a
smaller range of disc perimeters will produce fewer edges.
As seen in Table I, the number of edges of 2, 4, 6 and 8
cones configurations are reduced by 63%, 62%, 69% and
73% respectively. However, due to the limitation of drawing
output assessment; the final selection of threshold levels is
based on visual evaluation of the output images. For example,
as the middle portrait in Fig. 8, we found that settingkθ = 4
and a discs’ radii ratio,rinner :router , of 9:10 produced
reasonable output that faithfully captures and presents the
portrait’s detail, e.g., glasses frame.

The comparison chart shown in Fig. 9 illustrates the effec-
tiveness of the furthest neighbour theta-graph at reducing
the total number of output edges with different values ofkθ
and discs’ radii. By removing insignificant edges from the
sketches, the total number of drawing motions required by
Betty is reduced, so it can complete the sketching in less
time. Therefore, it improves the portrait outline of our older
point-to-point portrait drawing method.

TABLE I

OUTPUT EDGES OFkθ -CONE COMPARISON BASED ONCANNY ’ S

THREAHOLD- 25:100,INPUT PIXELS- 5450AND OUTPUT PIXELS- 1607

kθ-cone Inner
radius
(Pixels)

Outer ra-
dius (Pix-
els)

Output
edges

2 0 10 3427
2 5 10 2096
2 9 10 1264
4 0 10 4137
4 5 10 3323
4 9 10 1567
4 14 15 1889
6 0 10 5519
6 5 10 4149
6 9 10 1709
8 0 10 6718
8 5 10 4785
8 9 10 1786

VI. CONCLUSION AND FUTURE RESEARCH

This article has presented and implemented a modified Theta-
graph called Furthest Neighbour Theta-graph to solve its
line drawing problem inO(kθn logn) time. Our algorithm
produces a sketch-like portrait drawing, which could sig-
nificantly reduce the number of pixels drawn by a robot
such as Betty, while retaining the important details of the
input image. As future work, we will examine extensions
of this approach in four directions. First, we wish to take
other algorithms such as Bresenham’s line algorithm into
account, particularly to form a closer approximation to a
straight edge between two given points. Second, we will



0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8

N
u

m
b

e
r 

o
f 

e
d

g
e

s 

Number of cones, kθ 

 0:10

 5:10

 9:10

Fig. 9. Comparison of number of edges in the output images

consider the application of other convolution kernels or filters
in the thinning algorithm to generate better estimates of the
input image with fewer pixels. Then, the application of ma-
chine learning techniques will be considered to automatically
select and tune the existing parameters instead of manually
specifying them. Finally, we want to reduce the construction
time by considering a hybrid of other geometric graphs, such
as unit disc graphs, while still producing reasonable sketches
of portraits.

REFERENCES

[1] M. H. M. Gommel and J. Zappe, “autoportrait project:
Portrait drawings with a robotic arm,” 2004. Available at:
http://www.robotlab.de/auto/portrait.htm.

[2] Y. Lu, J. H. M. Lam, and Y. Yam, “Preliminary study on vision-
based pen-and-ink drawing by a robotic manipulator,” inProceedings
of the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, (Singapore), pp. 578–583, IEEE, July 2009.

[3] M. C. Lau and J. Baltes, “The real-time embedded system for a
humanoid: Betty,” in Proceedings of the 13th FIRA Robot World
Congress, vol. 103 of Communications in Computer and Informa-
tion Science, (Bangalore, India), pp. 122–129, Springer-Verlag Berlin
Heidelberg, September 2010.

[4] S. Calinon, J. Epiney, and A. Billard, “A humanoid robot drawing
human portraits,” inProceedings of the IEEE-RAS International Con-
ference on Humanoid Robots (HUMANOID 2005), (Tsukuba, Japan),
IEEE-RAS, December 2005.

[5] C. Y. Lin, L. W. Chuang, and T. T. Mac, “Human portrait generation
system for robot arm drawing,” inProceedings of the IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, (Sin-
gapore), pp. 1757–1762, IEEE, July 2009.

[6] T. Olsson, J. Bengtsson, R. Johansson, and H. Malm, “Force control
and visual servoing using planar surface identification,” in Proceedings
of the 2002 IEEE International Conference on Robotics & Automation,
(Washington, DC), pp. 4211–4216, IEEE, May 2002.

[7] S. Kudoh, K. Ogawara, M. Ruchanurucks, and K. Ikeuchi, “Painting
robot with multi-fingered hands and stereo vision,”Robotics and
Autonomous Systems, vol. 57, pp. 279–288, 2009.

[8] A. Srikaew, M. E. Cambron, S. Northrup, R. A. Peters, II, R. A. P.
Ii, D. M. Wilkes, and K. Kawamura, “Humanoid drawing robot,”in
In Proceedings of the IASTED International Conference on Robotics
and Manufacturing, 1998.

[9] N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas, “Connections
between theta-graphs, delaunay triangulations, and orthogonal sur-
faces,” inGraph Theoretic Concepts in Computer Science (D. Thilikos,
ed.), vol. 6410 ofLecture Notes in Computer Science, pp. 266–278,
Springer Berlin / Heidelberg, 2010.

[10] K. Clarkson, “Approximation algorithms for shortest path motion
planning,” in Proceedings of the nineteenth annual ACM symposium
on Theory of computing, STOC ’87, (New York, NY, USA), pp. 56–65,
ACM, 1987.

[11] J. M. Keil, “Approximating the complete euclidean graph,” in No.
318 on SWAT 88: 1st Scandinavian workshop on algorithm theory,
(London, UK), pp. 208–213, Springer-Verlag, 1988.

[12] A. C.-C. Yao, “On constructing minimum spanning trees in k-
dimensional spaces and related problems,”SIAM Journal on Com-
puting, vol. 11, no. 4, pp. 721–736, 1982.

[13] P. Bose, J. Gudmundsson, and P. Morin, “Ordered theta graphs,”
Comput. Geom. Theory Appl., vol. 28, pp. 11–18, May 2004.

[14] J. Gudmundsson, G. Narasimhan, and M. Smid, “Geometricspanners,”
Encyclopedia of Algorithms, pp. 360–364, 2008.

[15] J. L. Bentley, “Multidimensional binary search trees used for associa-
tive searching,”Communications of the ACM, vol. 18, no. 9, pp. 509–
517, 1975.

[16] J. L. Bentley, ”Multidimensional Divide-and-Conque,” Communica-
tions of the ACM, vol. 17, pp. 703–724, 1980.

[17] K. Mehlhorn and S. Näher, “Dynamic fractional cascading,” ALGO-
RITHMICA, vol. 5, no. 1, pp. 215–241, 1990.

[18] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, pp. 679–698, November 1986.

[19] B. Gary and K. Adrian,Learning OpenCV: Computer Vision with the
OpenCV Library. O’Reilly Media, 3rd. ed., 2008.


